
MARBLES will use a novel and systematic approach to access and exploit marine microbial biodiversity for sustainable bioprospecting to discover microbial consortia and bioactive molecules for application in aqua- and agriculture and in the clinic. MARBLES' ecology-based bioprospecting strategy will focuses on unique host-microbe interactions in marine environments, including marine sponges, microalgae and fish, which rely on their microbiomes and microbial natural products for disease resistance. Partners’ existing microbial collections and new ones generated during MARBLES will be harnessed for the discovery of novel natural products and synthetic microbial communities. For this, MARBLES will use a systems-wide genomics approach to uncover the bioactive agents in disease-suppressive microbiomes. Also, MARBLES will explore host- and microbe-derived chemicals that elicit production of bioactive compounds, as elicitors to revitalise drug screening. The deliverables will be microbes and consortia and bioactive natural products, their derivatives and elicitors, which can be harnessed to fight infectious diseases in the agrochemical and aquaculture industries and in healthcare. Besides highly innovative, the approaches will be cost-effective and will offer advantages from both environmental and health perspectives in comparison to existing alternatives. The sustainable production of bioprotectants will increase the effectiveness of fish production - reducing the pressure on harvesting wild fish - and aid the transition of the crop agriculture sector towards bio-based and circular solutions. MARBLES will work closely together with a panel of SMEs and large companies from the EU aquaculture, crop protection biotechnology and health sectors. MARBLES fully complies with the Nagoya and Cartagena Protocols, and aims to make major contributions to the UN sustainable development goals, SDG 2, 3, 12, 13 and 14, as well as to current UN processes (BBNJ, DSI, SynBio)
BiCIKL is a proposal that will initiate and build a new European starting community of key research infrastructures, establishing open science practices in the domain of biodiversity through provision of access to data, associated tools and services at (1) each separate stage of, and (2) along the entire research cycle. BiCIKL will provide new methods and workflows for an integrated access to harvesting, liberating, linking, accessing and re-using of sub-article-level data (specimens, material citations, samples, sequences, taxonomic names, taxonomic treatments, figures, tables) extracted from literature. BiCIKL will provide for the first time access and tools for seamless linking and usage tracking of data along the line: specimens → sequences → species → analytics → publications → biodiversity knowledge graph → re-use.
Insects are the little things that run the world (E.O. Wilson). With increasing recognition of the importance of insects as the dominant component of almost all ecosystems, there are growing concerns that insect biodiversity has declined globally, with serious consequences for the ecosystem services on which we all depend. Major gaps in knowledge limit progress in understanding the magnitude and direction of change, and hamper the design of solutions. Information about insects trends is highly fragmented, and time-series data is restricted and unrepresentative, both between different groups of insects (e.g. lepidoptera vs beetles vs flies) and between different regions. Critically, we lack primary data from the most biodiverse parts of the world. For example, insects help sustain tropical ecosystems that play a major role in regulating the global climate system and the hydrological cycle that delivers drinking water to millions of people. To date, progress in insect monitoring has been hampered by many technical challenges. Insects are estimated to comprise around 80% of all described species, making it impossible to sample their populations in a consistent way across regions and ecosystems. Automated sensors, deep learning and computer vision offer the best practical and cost-effective solution for more standardised monitoring of insects across the globe. Inter-disciplinary research teams are needed to meet this challenge. Our project is timely to help UK researchers to develop new international partnerships and networks to underpin the development of long-term and sustainable collaborations for this exciting, yet nascent, research field that spans engineering, computing and biology. There is a pressing need for new research networks and partnerships to maximize potential to revolutionise the scope and capacity for insect monitoring worldwide. We will open up this research field through four main activities: (a) interactive, online and face-to-face engagement between academic and practitioner stakeholders, including key policy-makers, via online webinars and at focused knowledge exchange and grant-writing workshops in Canada and Europe; (b) a knowledge exchange mission between the UK and North America, to share practical experience of building and deploying sensors, develop deep learning and computer vision for insects, and to build data analysis pipelines to support research applications; (c) a proof-of-concept field trial spanning the UK, Denmark, The Netherlands, Canada, USA and Panama. Testing automated sensors against traditional approaches in a range of situation; (d) dissemination of shared learning throughout this project and wider initiatives, building a new community of practice with a shared vision for automated insect monitoring technology to meet its worldwide transformational potential. Together, these activities will make a significant contribution to the broader, long-term goal of delivering the urgent need for a practical solution to monitor insects anywhere in the world, to ultimately support a more comprehensive assessment of the patterns and consequences of insect declines, and impact of interventions. By building international partnerships and research networks we will develop sustainable collaborations to address how to quantify the complexities of insect dynamics and trends in response to multiple drivers, and evaluate the ecological and human-linked causes and consequences of the changes. Crucially, this project is a vital stepping-stone to help identify solutions for addressing the global biodiversity crisis as well as research to understand the biological impacts of climate change and to design solutions for sustainable agriculture. Effective insect monitoring underpins the evaluation of future socio-economic, land-use and climate mitigation policies.
By their own very nature, islands are natural laboratories where evolutionary outcomes seem to exceed the limits of imagination. Stubby and flightless birds, dwarf elephants and hippos, and giant mice are some of the bizarre examples. Those morphological modifications are not the result of random variation but are triggered by the specific ecological conditions of the islands (absence of terrestrial predators and low level of competition for food and space). In some occasions, these conditions do not lead to a particular shift in body size, but instead to a diversification event, resulting in a disparity of forms, such as the case of Darwin’s finches in Galapagos. The island of Crete (Greece) housed one such diversification, that of the enigmatic extinct Pleistocene deer. This genus (Candiacervus) evolved into eight species in six size groups, ranging from ~28 to ~245kg in body mass, in less than 1 million years. In CREDE I will explore this unusual disparity of body size in Cretan deer to understand the evolutionary mechanisms behind species radiations in mammals. Despite advances over the years in knowledge on this lineage, mainly focusing on dwarf or giant species, we know little about the factors underpinning this level of diversity. In CREDE I will employ my expertise in deer bone histology together with the novel application of 3D image analysis to examine bone microstructure of Cretan deer, and thus, obtain data about their life strategies (age at maturity, pace of growth, longevity). Moreover, the use of stable isotope will provide new integrative data on the ecological and dietary preferences of the different species. Finally, the combination of both approaches will shed light on diversification of mammal lineages on a macroevolutionary scale, presenting a comprehensive framework for interpreting mammalian evolution.
Latin American forests cover a very large latitudinal and climate gradient extending from the tropics to Southern hemisphere high latitudes. The continent therefore hosts a large variety of forest types including the Amazon - the world's largest tropical forest - as well as the diverse Atlantic forests concentrated along the coast, temperate forests in Chile and Argentina as well as the cold rainforests of Valdivia and the Nothofagus forests of Patagonia. These forests are global epicentres of biological diversity and include several tropical and extra-tropical biodiversity hotspots. For example, the Amazon rainforest is home to ~10% of terrestrial plant and animal species and store a large fraction of global organic carbon. hotspots. Some of these Latin American forests still cover a large fraction of their original (pre-colombian) extent: the Amazon still covers approximately 5 Million km2, which is 80% of its original area. However, others, such as the Atlantic forest, have nearly disappeared and are now heavily fragmented. Temperate forests have also shrunk, despite efforts to halt further reduction. However, economic development, population rises and the growth in global drivers of environmental change mean that all forests now face strong anthropogenic pressures. Locally stressors generally result from ongoing development, selective logging, the hunting of larger birds and mammals, over-exploitation of key forest resources such as valuable palm fruits, mining, and/or forest conversion for agricultural use. Global environmental drivers stem from the world's warming climate. Yet it is not clear how these local pressures and changing environmental conditions will alter the composition of Latin American forests, and whether there are thresholds between human impacts - such as the lack of dispersers in heavily fragmented forest landscapes or climate conditions exceeding limits of species tolerance - and the community level responses of forest plants. We aim to investigate this, supporting the development of strategies that can preserve the diversity of these forests and their functioning. We achieve this by investigating the relationships between diversity and functioning of these forests; exploring whether there are thresholds in functioning resulting both from pressures of forest use and changing climate; by experimentally testing responses; and by generalizing predictive capability to large scales. ARBOLES aims to achieve these goals by integrating established forest inventory approaches with cutting-edge functional trait, genomics, experimental and remote sensing approaches. Our approach involves combining forest plots with plant traits, which will enable us to characterize state and shifts over time in the face of local human disturbance and changing climate and atmospheric composition. We will focus on traits along the following axes: (i) life-history strategies measuring investment in structure (like wood density, leaf mass per area, maximum height), (ii) investment in productive organs (like leaf nutrients), (iii) investment in reproductive organs, (iv) tolerance to water stress and heat stress. The work is being conducted in collaboration with research groups in Argentina, Brazil, Chile and Peru - and will provide a first cross-continent assessment of how humans are influencing Latin American forests.