Powered by OpenAIRE graph
Found an issue? Give us feedback

Simulation Solutions (United Kingdom)

Country: United Kingdom

Simulation Solutions (United Kingdom)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
10 Projects, page 1 of 2
  • Funder: European Commission Project Code: 310477
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R003971/1
    Funder Contribution: 1,021,820 GBP

    Over 80 million patients worldwide suffer from hip osteoarthritis, and increasing numbers of patients are requiring total hip replacement surgery. This is considered to be a successful intervention, however, an ageing population with increasing orthopaedic treatment needs, greater levels of obesity and patient expectations, and reducing healthcare budgets and surgical training are conspiring to challenge this success. There is also increasing demand for surgical treatments in younger patients that will delay the need for hip replacement surgery, these interventions reshape bone and repair soft tissue. One of the major causes of failure in the natural hip and in hip replacements is impingement, where there is a mechanical abutment between bone on the femoral side and hip socket or hip replacement components. In the natural hip, surgery reshaping the bone can reduce this impingement and soft tissue damage can be repaired; however, the effects of the amount of bone that is removed is not well understood nor is the best way to repair soft tissue. The number of hip replacements needing to be removed from patients and replaced with a new one in revision surgery is increasing; damage to the cup rim because of impingement is often implicated. It is known that this is more likely if the components are not well aligned relative to each another, or relative to the load direction experienced in the body. In this proposal, I seek to ensure long term outcomes of early intervention and hip replacement surgery are always optimum by negating concerns about impingement. To do this, I will develop an experimental anatomical hip simulator. The simulator will apply loads and motions to the hip similar to those observed clinically, and include high fidelity phantoms that mimic the natural hip, into which hip replacement components can also be implanted. This anatomical simulator will be used to assess how variables such as those associated with the patient (e.g. their bony geometry), the extent of early intervention surgery (e.g. the amount of bone removed) or the design of the prosthesis and how the hip is aligned in the body will affect the likelihood of impingement. This improved understanding of factors affecting the likelihood and severity of impingement will enable better guidance on how the surgery should be performed to optimise outcomes to be provided. I will work with orthopaedic surgeons to integrate this improved understanding into their clinical practice and with an orthopaedic company to integrate the findings into new product development processes; so that future interventions and devices can be designed to provide better outcomes for all patients.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L014823/1
    Funder Contribution: 3,372,620 GBP

    The Centre for Doctoral Training in Tissue Engineering and Regenerative Medicine will provide postgraduate research and training for 75 students, who will be able to research, develop and deliver regenerative therapies and devices, which can repair or replace diseased tissues and restore normal tissue function. By using novel scaffolds in conjunction with the patient`s own (autologous) cells, effective acellular regenerative therapies for tissue repair can be developed at a lower cost, reduced time and reduced risk, compared to alternative and more complex cell therapy approaches. Acellular therapies have the additional advantage as being regulated as a class three medical device, which reduces the cost and time of development and clinical evaluation. Acellular technologies, whether they be synthetic or biological, are of considerable interest to industry as commercial medical products and for NHS Blood and Transplant as enhanced bioprocesses for human transplant tissues. There are an increasing number of small to medium size companies in this emerging sector and in addition larger medical technology companies see opportunities for enhancing their medical product range and address unmet clinical needs through the development of regenerative devices. The UK Life Sciences Industry Strategy and the UK Strategy for Regenerative Medicine have identified this an opportunity to support wealth and health, and the government has recently identified Regenerative Medicine as one of UK`s Great Technologies. In one recent example, we have already demonstrated that this emergent technology be translated successfully into regenerative interventions, through acellular human tissue scaffolds for heart valve repair and chronic wound treatment, and be commercialised as demonstrated by our University spin out Tissue Regenix who have developed acellular scaffold from animal tissue, which has been commercialised as a dCEL scaffold for blood vessel repair. The concept can potentially be applied to the repair of all functional tissues in the body. The government has recognised that innovation and translation of technology across "the innovation valley of death" (Commons Science and Technology Select Committee March 2013), is challenging and needs additional investment in innovation. In addition, we have identified with our partners in industry and Health Service, a gap in high level skills and capability of postgraduates in this area, who have appropriate multidisciplinary training to address the challenges in applied research, innovation, evaluation, manufacturing, and translation of regenerative therapies and devices. This emerging sector needs a new type of multidisciplinary engineer with research and training in applied physical sciences and life sciences, advanced engineering methods and techniques, supported by training in innovation, regulation, health economics and business, and with research experience in the field of regenerative therapies and devices. CDT TERM will create an enhanced multidisciplinary research training environment, by bringing together academics, industry and healthcare professionals in a unique research and innovation eco system, to train and develop the medical and biological engineers for the future, in the emerging field of regenerative therapies and devices. The CDT TERM will be supported by our existing multidisciplinary research and innovation activities and assets, which includes over 150 multidisciplinary postgraduate and postdoctoral researchers, external research funding in excess of £60M and new facilities and laboratories. With our partners in industry and the health service we will train and develop the next generation of medical and biological engineers, who will be at the frontier in the UK in innovation and translation of regenerative therapies and devices, driving economic growth and delivering benefits to health and patients

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K029592/1
    Funder Contribution: 5,666,850 GBP

    The EPSRC Centre in Innovative Manufacturing in Medical Devices will research and develop advanced methods for functionally stratified design and near patient manufacturing, to enable cost effective matching of device function to the patient needs and surgical environment. This will deliver "the right product, by the right process to the right patient at the right time" to an enhanced standard of reliability and performance. The centre will research and develop: 1) Functionally stratified design systems, which will be initially applied to existing device manufacturing processes and subsequently to the manufacture of scaffolds, developing novel pre-clinical simulation methods, which match implant design to patient function, delivering a cost effective Stratified Approach for Enhanced Reliability (SAFER) 2) Innovative near patient manufacturing processes, enabled by stratified and individualised definitions of patient need, to provide a more cost effective approach to personalised devices. The two flagship challenges will be integrated with the key platform capabilities, across the centre to generate, for the first time, a closed loop design and manufacturing framework for medical devices to deliver enhanced performance and reliability. These innovative design and manufacturing advances will focus in the first instance on class 3 medical devices for musculoskeletal disease, where the cost of device failure and need for throughout life reliability are high. The National Centre will develop, lead and integrate an international network of industrialists, academics, clinicians and regulatory body representatives in order to support the musculoskeletal medical device manufacturing industry to deliver the innovative design and manufacturing challenges and implement the outcomes into manufacturing practice in a global highly regulated market. The Centre will create the research infrastructure, tools and methods, expertise and suitably qualified personnel to support continued innovation and growth of the medical device manufacturing sector in the UK. To do so, the Centre will work across the EPSRC priority research areas "Manufacturing the Future" and "Towards next generation healthcare," drawing upon capabilities and collaborating with existing centres of excellence. The Centre will provide a platform for fundamental innovative device manufacturing research and promote its rapid exploitation by industry through outreach and translation activities and a generic platform for diversification into other technologies. It will grow the UK's research capability in medical device manufacturing research to underpin the development of next generation medical devices and the development of high quality manufacturing processes to provide cost effective, reliable and effective devices. It will be applied to enhanced manufacturing of existing devices such as joint replacements and support manufacture of new products and biomaterial scaffolds. The Centre will operate across five leading academic centres of excellence in the field. The Centre will be led by Leeds University (Fisher, Williams, Ingham, Wilcox, Jennings and Redmond) and will be supported by collaboration from Newcastle (Dalgarno and McKaskie), Nottingham (Grant, Ahmed and Warrior), Sheffield (Hatton) and Bradford (Coates). The Centre will work closely with major manufacturers and users including surgeons who see at first hand the challenges of patient and surgical variation. The Centre will provide a platform for developing fundamental medical device manufacturing science and promote its rapid exploitation by industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I019103/1
    Funder Contribution: 2,761,090 GBP

    The Innovation and Knowledge Centre in Regenerative Therapies and Devices will provide a sustainable platform to address the creation of new technologies in Regenerative Therapies and Devices. It will promote their accelerated adoption, with increased reliability, within a complex global marketplace with increasing cost constraints. Therapies and devices which facilitate the regeneration of body tissues offer the potential to revolutionise healthcare and be a catalyst for economic growth, creating a new business sector within healthcare technology. The IKC RTD will build upon the culture and research landscape of the University and its partners (industry, NHS and intermediaries/users) through the development of new innovation infrastructure and practices which deliver major clinical, health and industry outcomes.In the first year of operation the IKC has:1. Recruited and established a core innovation team to manage and grow the activities of the IKC.2. Established academic supply chain, new centre with 160 researchers.3. Won 50m new research income, funding over 120 research projects.4. Defined a new strategic framework for innovation.5. Established an innovation pipeline with stage gates and criteria for progression.6. Defined and developed the IP portfolio through definition of the unique capabilities.7. Established a pipeline of 63 collaborative innovation projects.8. Engaged with 26 different companies in collaborative innovation projects.9. Established a wider network of 80 plus companies.10. Contributed to nine new products that have reached the market.11. Defined a model for sustainability of IKC RTD.12. Received significant national and global recognition through political visits and extensive media coverage for research and innovation.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.