
This proof of concept project will create a micro-textured flexible plastic film using technology developed at RAL which will form the substrate for an organic photovoltaic (OPV) device. The new structure is expected to be highly absorbing to light and facilitate greater device efficiency than presently possible. Successful development will increase the commercialisation prospects for OPV technology.
The UK has a world class reputation for design and manufacture of space based technologies. A new National Space Academy has been launched this year to help boost the size and quality of the UK's science and engineering expertise. The proposal supports strongly The UK Space Directory, an organisation of eight groups representing and supporting the UK space community and including the Technology Strategy Board that state "the UK Space Industry has come together to propose an ambitious 20 year strategy to capture 10% of the global space market, £40 billion, by 2030 and in doing so create 100,000 UK jobs". The UK houses some of the leading companies in space applications such as; Inmarsat, Rolls Royce, Logica, Vega Space, Astrium, Qioptiq Space Technology and Surrey Satellite Technology Limited. The latter two companies strongly back the research detailed within this proposal and have both provided satements of support. This proposal seeks to offer an alternative PV technology for large area arrays and to be the first to report thin film cadmium telluride (CdTe) deposited directly onto toughened cerium-doped microsheet glass (CMG), explicitly targeting a significant increase in specific power by a step-change reduction of system weight. The Qioptiq Space Technology CMG microsheet glass is optimised to match the coefficient of thermal expansion (CTE) of gallium arsenide (GaAs) based space solar cells. With the CdTe CTE almost identical to that of GaAs the choice of CMG is ideal for the prevention of delamination under the severe thermal gradients to which space PV is exposed. This adventurous approach, using the CMG as both the radiation barrier and substrate, will be proven by characterisation of 5 x 5 cm2 deposited devices and finally scaled to 10 x 20 cm2 on the Centre for Solar Energy Research (CSER) pilot metalorganic chemical vapour deposition (MOCVD) system. This proposal has the content and vision to make a significant contribution to the UK's flourishing space industry. Key to the success of the project will be the dissemination and pathways to impact of the research outcomes; this will be ensured through regular reporting to and feedback from a steering group of potential exploiters-Industrial experts and through targeted press releases. This proposal offers UK research the chance to impact the space PV market either through licencing of the arising IP and more excitingly in the current economic climate through manufacture of the final product.
There are a large number of biorefinery initiatives in Europe based on a range of different feedstocks including grass, cereals, legumes and sugar beet. Grass-based biorefinery initiatives are located in Ireland, Belgium, Austria, Poland, Germany, and the Netherlands. High-sugar perennial rye-grass has the potential to provide an ideal biorefinery feedstock for the production of bio-ethanol and bulk chemicals such as succinates and lactic acid, with other co-product streams such as biocomposite materials and animal feeds manufactured from the fibre fraction. This grass is high yielding (ca.15 tonne dry wt./hectare/year) and is ideally suited to the climatic and soil conditions experienced in the UK. It can grow on marginal land that will not support the growth of cereal crops and hence will not jeopardise future food supplies. It requires low annual inputs, especially when grown with clover as a source of nitrogen, and does not require investment in new equipment for sowing and harvesting. This feedstock is available now and is abundant throughout the UK. From a biorefining perspective, it is highly digestible (4-6% lignin) and has a high water soluble sugar content (up to 40%). It also has the benefit of storing its carbohydrate reserves in the form of the water-soluble sugar, fructan, rather than starch. Unlike starch, which requires treatments with heat, acids and a series of enzymes, for conversion to a fermentable sugar, fructan can be converted through the use of a single enzyme. A grass biorefinery based on ethanol and bulk chemicals as well as biocomposites production alone, however, is unlikely to be economically viable and it is necessary to produce additional high value chemicals from the fructan molecules isolated. This project involves a multidisciplinary team of scientists with complementary skills ranging from plant biology to biochemistry, chemistry and surface and colloid science. It sets out to utilise the diverse range of fructan molecules found in perrential ryegrass, as well as novel molecules created by the action of fructan hydrolysing enzymes on these fructans to produce novel high value chemicals. It will initially identify the optimum rye-grass feedstock for a biorefinery by screening a range of perennial ryegrasses developed at Aberystwyth University that will produce high yields of fructans with specific size and molecular architecture. Novel ultrasound technologies will be investigated to maximise the release of plant sugars from the rye-grass through mechanical rupture of cell walls and to assist in the removal of coloured impurities. The fructans will be separated into different classes according to their molecular size and will then be chemically modified to produce a range of high-value sugar-based polymer and surfactant molecules that can be used in the formulation of a broad range of commercial products including, pharmaceuticals, cosmetics, personal care, coatings, etc.. Their role in these products is to aid the dispersion of particles, the emulsification of oils and in the control the rheological behaviour. The global demand for surfactants in 2000 was 19.2 million tonnes with carbohydrate based products accounting for 2.9 million tonnes. The demand for biosurfactants produced from renewable sources is likely to expand rapidly, with increasing pressure to reduce the reliance on petroleum derived products. The contribution of the value of the speciality chemicals produced during the course of the project will be assessed with regards to the economics of a total grass grass biorefinery.
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.