Powered by OpenAIRE graph
Found an issue? Give us feedback

UMS

United Monolithic Semiconductor (France)
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
12 Projects, page 1 of 3
  • Funder: French National Research Agency (ANR) Project Code: ANR-08-VERS-0001
    Funder Contribution: 1,582,360 EUR
  • Funder: French National Research Agency (ANR) Project Code: ANR-10-VERS-0007
    Funder Contribution: 1,324,010 EUR

    The GENGHIS KhAN project proposes to develop new AlInN/GaN WGB technology for millimeter wave applications dedicated to satellite communications. In the RF business, GaN HEMT is now ready to challenge Si LDMOS and GaAs pHEMT in the telecommunication base stations market (3G, 4G, WiMAX...). With devices reaching 150W @ 6GHz under 48V bias, the GaN technology could be implemented within the 2 millions deployed mobile phone base stations and emerging WiMAX infrastructures. Nevertheless, developments are still on going to widen the market of WBG technologies toward high frequency. Researches and developments are ongoing from X-band (8 GHz) up to E band (90 GHz) in Europe (UMS, SELEX SI), Japan (FUJISTU, NEC, Matsushita Electric Industrial) and in the United States (TRIQUINT, RFMD, CREE, RAYTHEON, HRL, NORTHROP GRUMMAN…). This proposal is focused on the evaluation and development of a new generation of wide band gap (WBG) GaN technology for high frequency operation. This project will take advantage of the new lattice-matched AlInN/GaN heterostructure, which shows evidences of better frequency performances than other components. The main technologies, which can be used today for solid-state microwave power generation, are based on silicon (Si), gallium arsenide (GaAs), and AlGaN/GaN. Considering 10W output power target, the operation frequency cut-offs of those different technologies are roughly 4GHz, 10GHz and 18GHz respectively. The new AlInN/GaN heterostructure was pioneered by Europe through the EU programs “ULTRAGAN” (Future Emerging Technology STREP - FP6, c.f. http://www.ultragan.eu/ ) and “MORGAN” (NMP - IP - FP7, c.f. http://www.morganproject.eu/ ) , both projects being lead by Alcatel Thales III-V Lab. Those projects improved drastically the reputation of the European research in GaN for microelectronics, thanks to disruptive results, with the demonstrations of 10W/mm at 10GHz with power added efficiency (PAE) of 56%, 13W/mm at 3.5GHz with PAE up to 70%, and 4.3W/mm with 43% PAE at 18GHz. These PAE are impressive; they were not expected few years ago for nitrides. Moreover it was also demonstrated an incredible thermal stability never observed previously for any other transistor type with electrical operation at temperatures of 800°C for hundreds of hours.

  • Funder: French National Research Agency (ANR) Project Code: ANR-10-VERS-0006
    Funder Contribution: 673,743 EUR

    Telecom infrastructures are based on various standards using different modulation schemes (PSK, QPSK…..) characterized by a Peak to Average signal Ratio (PAR) which can reach 10.5dB for W-CDMA modulation. The expected 4G standards (Evolved UMTS and WiMax) are operating OFDM multiplexing technology which presents the advantage to be robust but leads to increase the PAR in parallel. Combining stronger electric performances requirement (linearity and RF power) and the economical constraint of the zero defect, it is evident that the reliability of power amplifier appears to be a crucial aspect. UMS, main industrial actor in the field of microwave electronic components and circuits, intends to industrialize GaN based power component covering such telecom applications. Wide band gap technologies represent the corner stone for the next generation of telecommunication systems and such development is critical to maintain independence and industrial competitiveness in Europe. The technological process maturity is a key factor to reach reliability requirement. This explains why the purpose of this project is the development of a specific and dedicated methodology for characterization and physical analysis of GaN technologies. The ReaGaN project clearly aims at supporting the industrialization of GaN technologies. This requires a deeper understanding of the physical mechanisms taking place in GaN devices as well as the investigation of material properties and their evolution during the process as they determines the resulting performances of the amplifier. To reach this end, new analysis techniques dedicated to Wide Band Gap semiconductor technologies have still to be improved or developed. These analytical techniques include electrical diagnostics as well as physical and structural characterization techniques. In particular, it is expected that the correlation of the results given by electrical and physical techniques proposed and used in this project will lead to the identification, characterisation and localization of nano-structural defects and physical mechanisms taking place in GaN technologies and potentially responsible for degradation. During this project, devices issued from the evaluation and qualification of UMS processes will be analyzed in significant details. UMS is currently developing two GaN technologies built on SiC substrate for high thermal properties: Power bar GH50, and Monolithic Microwave Integrated Circuit (MMIC) GH25 technologies based on 0.5µm and 0.25µm gate length transistor respectively. During this project, specific devices or structures will be procured to the consortium partners to investigate particular processing options of the technology (eg gate module, passivation, epistructure …). The life tests of the devices will be performed in the frame of UMS internal projects. The comparative analysis of different processing steps will provide important and pertinent information to support the step-up of the GH25 and GH50 technologies from one generation to the next one. The complementarities between techniques will be demonstrated as a proof of the existing interaction between electrical transport properties, light characteristic and material structural properties. This project involves three academic partners (IMS UMR CNRS, LAAS UPR CNRS, LEPMI UMR CNRS) and three companies (UMS, TRT, SERMA). The project duration isof three years.

  • Funder: European Commission Project Code: 242394
  • Funder: European Commission Project Code: 606724
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.