Powered by OpenAIRE graph
Found an issue? Give us feedback

Elytt Energy (Spain)

Elytt Energy (Spain)

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 766974
    Overall Budget: 501,098 EURFunder Contribution: 501,098 EUR

    The CERN’s projects, HL-LHC and FCC, will create a big push in the state of the art of High-Field Superconducting magnets in the ten coming years. The performance of superconducting materials such as Nb3Sn and HTS will be developed to yield higher performance at lower costs and the construction materials and techniques will be advanced. At the same time, in the context of Energy’s savings, Industry is experiencing a renewed interest in the domain of industrial superconductivity with fault current limiters, wind generators, electric energy storage, etc. Besides, Medical Research shows a strong interest in High-Field MRI, especially for the brain observation. Considering the social impact of the investment of the HL-LHC project and FCC study, CERN and CEA have established a Working Group on Future Superconducting Magnet Technology (FuSuMaTech).The Working Group has explored a large spectrum of possible synergies with Industry, and has proposed a set of relevant R&D&I projects to be conducted between Academia and industry. To keep the leading position of Europe in the domain, the most efficient way is to support joint activities of Industry and academic partners on the common concerns in view of overcoming the technological barriers. The FuSuMaTech Initiative aims to create the frame of collaborations and to provide common tools to all the EU actors of the domain. The FuSuMatech Initiative is a dedicated and large scale silo breaking programme which will create a sustainable European Cluster in applied Superconductivity. It will enlarge the innovative potential especially in High Field NMR and MRI, opening future breakthroughs in the brain observation. The FuSuMaTech Phase 1 is the first step of the FuSuMaTech Initiative. It is based on practical cases studies and will consist in preparing: 1. The administrative and legal conditions; 2. The detailed description of generic R&D&I actions and of the Technology demonstrators; 3. The funding scheme for the future actions.

    more_vert
  • Funder: European Commission Project Code: 101131850
    Funder Contribution: 4,999,620 EUR

    Research in many cases requires large infrastructures, which often use significant amounts of energy. In particular, research at some of the large-scale facilities, such as particle accelerators, which are either hosted or used at European Level are very energy intensive. Power usage may reach 100 MW or more, with energy consumptions comparable to small towns. To make progress in science, these large-scale infrastructures are essential despite their energy consumption requirements. At the same time, our society is faced with the enormous challenge to transition into a carbon-neutral economy, and to minimize our footprint in terms of energy usage from non-renewable sources, and our output of substances which burden the environment. For this reason, research infrastructures need to develop and use energy efficient technologies. The way we operate our infrastructures needs to be re-evaluated. Intelligent solutions which reduce energy consumption need to be developed. Through intelligent algorithms the energy usage of our infrastructures needs to be adjusted to the available resources, such as renewable energy, and should help in providing an overall stable energy supply to society. The RF2.0 consortium vision is to design and operate accelerators in the way that they can run safe and stable anytime on 100% renewable energy supply, i.e., almost independently from the public power grid. To achieve this vision, comprehThis project’s originality lies in the comprehensive analysis of large research infrastructures’ energy management problem, from component to system level, both at experimental physics and energy engineering level, and in developing and testing in realistic environments of possible corrective actions. The RF2.0 project will involve 6 world renowned research infrastructures for the acceleration of particles, of which 5 of European Interest, an energy technology lab, and 4 SMEs focused on the (co-)development and technology transfer of new energy solutions.

    more_vert
  • Funder: European Commission Project Code: 101004730
    Overall Budget: 10,608,500 EURFunder Contribution: 10,000,000 EUR

    Particle accelerators are a key asset of the European Research Area. Their use spans from the large installations devoted to fundamental science to a wealth of facilities providing X-ray or neutron beams to a wide range of scientific disciplines. Beyond scientific laboratories, their use in medicine and industry is rapidly growing. Notwithstanding their high level of maturity, particle accelerators are now facing critical challenges related to the size and performance of the facilities envisaged for the next step of particle physics research, to the increasing demands to accelerators for applied science, and to the specific needs of societal applications. In this crucial moment for accelerator evolution, I.FAST aims at enhancing innovation in and from accelerator-based Research Infrastructures (RI) by developing innovative breakthrough technologies common to multiple accelerator platforms, and by defining strategic roadmaps for future developments. I.FAST will focus the technological R&D on long-term sustainability of accelerator-based research, with the goal of developing more performant and affordable technologies, and of reducing power consumption and impact of accelerator facilities, thus paving the way to a sustainable next-generation of accelerators. By involving industry as a co-innovation partner via the 17 industrial companies in the Consortium, 12 of which SME’s, I.FASTwill generate and maintain an innovation ecosystem around the accelerator-based RIs that will sustain the long-term evolution of accelerator technologies in Europe. To achieve its goals, I.FAST will explore new alternative accelerator concepts and promote advanced prototyping of key technologies. These include, among others, techniques to increase brightness and reduce dimensions of synchrotron light sources, advanced superconducting technologies to produce higher fields with lower consumption, and strategies and technologies to improve energy efficiency.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.