
Recent work shows that renewable energies could develop faster if their efficiencies and economic viability were demonstrated. The present project aims to test renewable energy (RE) technical solutions packages in order to optimize their technical performance and prove their economic performance. To tackle this challenge, the consortium proposes to work on renewable energy packages based on industrial / academic pairs with high scientific expertise. These renewable energy packages (PV, solar thermal, heat pump, RES coupled with storage, etc.) will demonstrate their ability to cover 70% of the global annual energy demand of the building. These three technical packages will undergo the same test protocol: 1 / Semi-virtual simulation (to test in a controlled atmosphere). 2 / Real test on demonstration sites (to analyze dispersion of results), 3 / Cross simulation to optimize the products via numerical and economic models. The process implemented to obtain these technical and economic data will be documented and described in a didactic manner in order to serve as a communication lever for end-users. The three demonstration sites were chosen for the diversity of their climate (Germany, France, Sweden)
In LoLiPoP IoT innovative Long Life Power Platforms will be developed to enable retrofitting of wireless sensor network (WSN) modules in IoT applications. This includes the development of algorithms to perform FUNCTIONALITIES like asset tracking and condition monitoring (for predictive maintenance). They can be used in APPLICATIONS such as industry 4.0, smart mobility and energy efficient buildings. LoLiPoP IoT creates an ecosystem of developers, integrators and users to develop these platforms thinking about power/battery life, ease of installation and maintenance. The project is driven by 12 laboratory- and field-based use cases to initially demonstrate their technical viability and then potential impact. Expected impacts from the LoLiPoP IoT use cases include; a) typical battery life increase from ~18 months to >5 years, b) Reduced maintenance overhead of mobile and fixed assets from >30% to 10% in production time, cycle time and inventory costs, e) Improved comfort levels and well-being of building occupants whilst reducing energy footprint by >20% and f) Revenues of >€10M PA for LoLiPoP IoT industry partners offering asset tracking & condition monitoring services. All of this is achieved by developing and integrating: a) Multi-source Energy Harvesting solutions (vibrational and photovoltaic transducers, PMICs and discrete circuits), b) Digital interfacing to contextually adapt mode settings of WSN devices and connected systems to minimise power drain, c) Ultra low power components for WSN, d) Innovative Architectures for wireless data collection that minimize battery power drain, e) Simulation Models to optimise component design and integration and f) embedded AI/ML in IoT devices, for lower latency and power consumption and higher robustness.
Ensuring sustainable food systems requires vastly reducing its environmental and health costs while making healthy and sustainable food affordable to all. In current food systems many of the costs of harmful foods and benefits of healthful foods are externalized, i.e. are not reflected in market prices and therefore not in decision making of actors in food value chains. Solving the externality problems means to determine current costs of externalities and redefine food prices (true pricing) to internalize them in daily practice. Policy makers, businesses and other actors in the food system, lack sufficient information and knowledge to internalize externalities to achieve a sustainable food system. FOODCoST responds to this challenge by designing a roadmap for effective and sustainable strategies to assess and internalise food externalities. FOODCoST provides approaches and databases to measure and value positive and negative externalities, proposing a game-changing and harmonised approach to calculate the value of climate, biodiversity, environmental, social and health externalities along the food value chain based on economic cost principles. FOODCoST provides an analytical toolbox to experiment, analyse, and navigate the internalisation of externalities through policies and business strategies providing tools and guidance to policy makers and businesses to assess the sustainability impact of their internalisation actions. FOODCoST emphasises the diversity of challenges of true pricing in different value chains and countries and regions, and cocreates, tests and validates the valuation and internalisation approaches in 11 diverse case studies enabling to test, validate and enrich the approaches in order to transit towards a sustainable food system. The project will be based on a multi-actor approach that will ensure a continuous dialogue with all relevant actors across the whole food system (land and sea).
During the last decades a trend towards the use of lightweight materials in constructions and infrastructures, as well as in the aerospace and automotive industry is observed. Lightweight components are easy to transport, handle and install and demand less operational energy reducing substantially their environmental footprint and the relative costs. Among other materials, concrete and ceramics are on the focus of interest due to their wide range of application and their durability. Based on end applications lightweight attributes must be coupled with enhanced properties and multifunctionalities, such as high mechanical strength, self-sensing, self-cleaning properties, which can be achieved with the aid of nanomaterials. The main objective of the LightCoce project is to cover the gap in the upscaling and testing of multifunctional lightweight concrete and ceramic materials by providing open access to SMEs or Industry to a single entry point ecosystem consisting of already developed Pilot Lines (including three clusters of existing pilot lines; a. Concrete group, b. Conventional Ceramics group, and c. Advanced Ceramics group), process and materials modelling, Characterization, Standardisation, Regulatory, Safety & Environmental Assessment, Data Management and Innovation Management that will be accessible to the interested stakeholders at fair conditions and cost. The ecosystem will support the upscaling activities of European SMEs and industry, covering a large range of end applications from constructions materials (bricks, ceramic tiles), infrastructures (ready mix concrete, prefabricated components), to high tech applications in automotive & aerospace industry. Thus, LightCoce ecosystem targets will be achieved through the collaboration of a well-balanced multidisciplinary consortium consists of 26 Industrial and RTO partners well recognized and world leading experts in their fields: 5 Large Enterprise 8 RTDs, 12 SMEs, and 1 Association spread across 9 countries.