Powered by OpenAIRE graph
Found an issue? Give us feedback
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
716 Projects, page 1 of 144
  • Funder: European Commission Project Code: 766955
    Overall Budget: 3,106,380 EURFunder Contribution: 3,106,380 EUR

    µSPIRE aims at establishing a technological platform for homo- and hetero- structure based photonic and electronic devices using the self-assembling of epitaxial crystals on patterned Si substrates. Emerging micro-electronic and photonic devices strongly require the integration on Si of a variety of semiconducting materials such as Ge, GaAs, GaN and SiC, in order to add novel functionalities to the Si platform. µSPIRE pursues this goal employing a novel deposition approach, which we termed vertical hetero-epitaxy (VHE). VHE exploits the patterning of conventional Si substrates, in combination with epitaxial deposition, to attain the self-assembly of arrays of Ge and GaAs epitaxial micro-crystals elongated in the vertical direction, featuring structural and electronic properties unparalleled by “conventional” epitaxial growth. As a concrete demonstration of VHE potentialities, we will deliver a complete set of novel photon counting detectors: VHE micro-crystals will be used as the elementary microcells for single-photon detectors with performances far beyond those of current state-of-the-art devices, namely: - High photon detection efficiency (> 80%), thanks to the use of several µm thick micro-crystals; - High photon-number-resolving capability, thanks to the high density of micro-crystals; - High fill-factor (> 90%), thanks to the almost complete surface coverage attained by VHE; - Extended sensitivity from visible (350 – 900 nm) to NIR (800 – 1800 nm) and MIR (up to 10µm), thanks to the integration on Si of Ge and GaAs quantum wells. As a first action towards real applications, the Si and Ge devices will be tested on phantoms closely mimicking breast tissue in order to assess the improvement in signal level with respect to state of the art detectors, and investigate the potential extension to a presently unexplored, but appealing, long-wavelength spectral range (1500nm+) of breast imaging and optical assessment of breast cancer risk.

    more_vert
  • Funder: European Commission Project Code: 200720
    more_vert
  • Funder: European Commission Project Code: 777492
    Overall Budget: 13,549,200 EURFunder Contribution: 6,000,000 EUR

    Prostate Cancer (PCa) is the second leading cause of cancer, among men in Europe. There are currently major unmet needs in this field, such as insufficient knowledge on risk factors that contribute to PCa and on patient characteristics (including genetic profiles) that could facilitate patient stratification. Finally, there is lack of meaningful engagement of all key stakeholders, while the knowledge currently gained from clinical practice and real life data is not being fed back into PCa patients’ care pathways. There is thus a need for better definition of PCa across all stages, improved patient’s stratification at diagnosis, and standardisation of PCa-related outcomes based on real life data. PIONEER’s unique dual approach is to first identify critical evidence gaps in PCa by respected Key Opinion Leaders, and then embark on a research priority setting exercise that reflects the needs of all key stakeholders in PCa management. To achieve this, PIONEER has brought together comprehensive datasets that consists of the most relevant prostate clinical trials and registries, large epidemiological cohorts, electronic heath records, and real-life data from different European (and non-European) patient populations. These unique data sets will be integrated, standardised, harmonised and analysed using approaches that are built on our experience of similar previous IMI projects i.e EMIF, and eTRIKS, and analysed using a unique set of methodologies and advanced analytics methods (OMOP, eHS). PIONEER has already performed a first PCa research priority setting survey, where major stakeholders were asked to identify the current unmet needs in PCa. The five most important open questions will be used as pilot studies to verify PIONEER’s research framework. As such, PIONEER’s deliverables will be outcome-driven, value-based and patient-centric, and relevant to all key stakeholders, as they would have been meaningfully involved from the inception of the project.

    more_vert
  • Funder: European Commission Project Code: 101075426
    Overall Budget: 1,499,830 EURFunder Contribution: 1,499,830 EUR

    Forests play a central role for global carbon cycling and biodiversity. Yet, the unabated continuation of climate change and increasing anthropogenic pressure on forest resources are altering forest ecosystems by modifying species composition and ecosystem processes. Increasing temperatures are likely to increase decomposition rates and thus carbon emissions, while the opposite effect may be expected from loss of decomposer biodiversity as land-use intensity increases. However, it remains unknown how climate change and land use interactively shape decomposer communities, decomposition rates and carbon fluxes. This limits the ability to model the future of the global forest carbon sink as well as of forest policy and management to counteract undesired developments. Here, I will investigate the joint effects of climate change and land use on decomposer communities and carbon fluxes from wood decomposition at the global scale, as well as the underlying processes and mechanisms. Making use of an operating network of 60 research sites on six continents, I will study how biodiversity-decomposition relationships and effects of land use change along global climate gradients. Empirical results will be used to model carbon fluxes from wood decomposition at the global scale and to generate projections of carbon fluxes under different scenarios of forest use and climate change. Extensive experiments will be conducted both in the field and in walk-in climate chambers to identify which facet of biodiversity drives wood decomposition and to unravel the mechanisms behind the climate-dependency of biodiversity-decomposition relationships. The BIOCOMP project will bring about a new level of understanding of how biodiversity and carbon cycling in forest ecosystems worldwide will change as a result of climate change and land use, and it will provide the data and strategies to tackle one of the most pressing challenges of current climate and forest policy.

    more_vert
  • Funder: European Commission Project Code: 952792
    Overall Budget: 20,000,000 EURFunder Contribution: 20,000,000 EUR

    The 2D Experimental Pilot Line (2D-EPL) project will establish a European ecosystem for prototype production of Graphene and Related Materials (GRM) based electronics, photonics and sensors. The project will cover the whole value chain including tool manufacturers, chemical and material providers and pilot lines to offer prototyping services to companies, research centers and academics. The 2D-EPL targets to the adoption of GRM integration by commercial semiconductor foundries and integrated device manufacturers through technology transfer and licensing. The project is built on two pillars. In Pillar 1, the 2D-EPL will offer prototyping services for 150 and 200 mm wafers, based on the current state of the art graphene device manufacturing and integration techniques. This will ensure external users and customers are served by the 2D-EPL early in the project and guarantees the inclusion of their input in the development of the final processes by providing the specifications on required device layouts, materials and device performances. In Pillar 2, the consortium will develop a fully automated process flow on 200 and 300 mm wafers, including the growth and vacuum transfer of single crystalline graphene and TMDCs. The knowledge gained in Pillar 2 will be transferred to Pillar 1 to continuously improve the baseline process provided by the 2D-EPL. To ensure sustainability of the 2D-EPL service after the project duration, integration with EUROPRACTICE consortium will be prepared. It provides for the European actors a platform to develop smart integrated systems, from advanced prototype design to small volume production. In addition, for the efficiency of the industrial exploitation, an Industrial Advisory Board consisting mainly of leading European semiconductor manufacturers and foundries will closely track and advise the progress of the 2D-EPL. This approach will enable European players to take the lead in this emerging field of technology.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
2 Organizations, page 1 of 1

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.