
The terahertz (THz) frequency region within the electromagnetic spectrum, covers a frequency range of about one hundred times that currently occupied by all radio, television, cellular radio, Wi-Fi, radar and other users and has proven and potential applications ranging from molecular spectroscopy through to communications, high resolution imaging (e.g. in the medical and pharmaceutical sectors) and security screening. Yet, the underpinning technology for the generation and detection of radiation in this spectral range remains severely limited, being based principally on Ti:sapphire (femtosecond) pulsed laser and photoconductive detector technology, the THz equivalent of the spark transmitter and coherer receiver for radio signals. The THz frequency range therefore does not benefit from the coherent techniques routinely used at microwave/optical frequencies. Our programme grant will address this. We have recently demonstrated optical communications technology-based techniques for the generation of high spectral purity continuous wave THz signals at UCL, together with state-of-the-art THz quantum cascade laser (QCL) technology at Cambridge/Leeds. We will bring together these internationally-leading researchers to create coherent systems across the entire THz spectrum. These will be exploited both for fundamental science (e.g. the study of nanostructured and mesoscopic electron systems) and for applications including short-range high-data-rate wireless communications, information processing, materials detection and high resolution imaging in three dimensions.
The ability to observe the internals of an execution of a computer-based system is a fundamental requirement for ultimately ensuring correctness and safe behaviour. Within COEMS (Continuous Observation of Embedded Multicore Systems) a novel observer platform with supporting verification methods for software systems is created. COEMS tackles the issues of detection and identification of non-deterministic software failures caused by race conditions and access to inconsistent data. It gives insight to the system’s actual behaviour without affecting it allowing new verification methods. An efficient real-time access and analysis as a critical element for operating safe systems will be developed and validated by COEMS. Moreover, a cross-layer programming approach supporting failure detection will be proposed. COEMS aims at shortening the development cycle by considerably increased test efficiency and effectivity, by increased debug efficiency (especially for non-deterministically occurring failures) and by supporting performance optimization. COEMS improves the reliability of delivered systems, enabling software developers to identify, understand, and remove software defects before release, as well as improving efficiency of software for multi/many-core computing systems in terms of performance, real-time behaviour, and energy consumption. The two Global Players Thales Group and Airbus Group, both active in safety-critical domains, will validate the COEMS approach by suitable demonstrators, i.e. testing and debugging of real-world multicore applications. In addition to these two domains, we will address the domains of safety-critical medical applications, automation and automotive industry, as well as the Internet of Things. Technologically, COEMS will provide the world-wide first comprehensive online observation approach that is non-intrusive allowing improved testing and debugging. Altogether, COEMS will define a new state-of-the-art for software systems development.
Terrestrial demands on space missions are increasing rapidly in terms of complexity, technology and velocity. Next to navigation (GPS, GALILEO), science (investigation of space and the universe) and exploration (ISS, Mars), two types of space missions are very important for Europe: Earth Observation (EO, for the sustainability of nature and mankind) and Telecommunication (TC, for business and global connectivity). Each mission requires partly unique technologies, which are produced by only very few global suppliers. If these technologies are not available from within Europe, there is a danger that non-dependent missions may not be performed, created and tailored with a consequent loss of sovereignty in political decisions and a loss of market shares. One of these so-called “Critical Technologies” is the “Large Deployable Reflector (LDR)”. Packed in stowed configurations, these reflectors can be accommodated on satellites, which then still comply with the limited launcher fairing volumes. By enlarging the size of the reflector it is possible to offer higher sensitivity and resolution, e.g. for radar missions (EO & science) and implement stronger communication links for e.g. higher data throughput (TC). Within the upcoming eight years the demand for such reflectors will increase worldwide, whereas the Consortium targets a certain market share with its “Large European Antenna (LEA)”. The proposed H2020 project would now enable the combination of the technologies previously developed by the consortium members and the joining of further European entities to fill the remaining gaps and form one strong and complete European team. Through obtaining an EC-grant for LEA, each building block will be upgraded with innovation, adapted to a scenario and qualified to meet one common target, namely: 1st European PFM (including reflector and arm) reaching TRL 8 to be ready for integration by the end of 2020 and for flight in 2021.
CICONIA’s ambition is to improve the understanding of non-CO2 emissions with regards to the current aircraft/engine technologies and operating fleet, as well as their evolution and their climate effects, but with the clear objective to evaluate and develop impact reduction solutions covering several promising mitigation options on flight operations, through the definition of innovative dedicated Concepts of Operations (CONOPS) and their assessment in comparison to legacy operations. CICONIA wants to define and assess CONOPS solutions with engagement from all concerned stakeholders: Airlines with their OCC, Network, Met providers and Air Traffic Control. CICONIA mitigation options will offer the best proposal for reduction in climate impacts, taking into account both, the CO2 and non-CO2 climate effects. A TRL4 is targeted at the end of the 3 years project. CICONIA is composed of the four main topics: 1. A weather service that will improve weather forecasting capabilities tailored for operational mitigation concepts, provide technical enablers definition and recommendation for long term improvement that will feed a better understanding of the stakes; 2. A climate enabler that will improve climate impact assessment and models tailored for operational mitigation concepts; 3. CONOPS strategies definition: CICONIA proposes to further analyse how operational stakeholders could integrate mitigations in their plan or in their tactical operations to mitigate climate impacts. A climate enhanced operations CONOPS will be delivered and assessed with representative fast time simulation platforms, integrating weather and climate models, enabling the evaluation of a large area and long time period. These simulations will support the assessment of the complete picture from climate, economics and operational impact points of view, conducting trades on different assumptions, understanding their impact on the decision making and finally providing guidance; 4. An ATM mitigation solution through trials: Investigate multiple ATM strategies for flights to minimise or avoid persistent warming contrails, through operational trials and data analysis. This solution will focus on reducing the climate impact of non-CO2 components, specifically by minimising crossings of persistent, highly warming contrails from aircraft in oceanic airspace. CICONIA aims as well at providing material to Authorities and Regulators, to analyse the appropriate rulemaking that could serve a fair and uniformed framework to minimise non-CO2 climate effects in a global environmental centric approach addressing as well CO2. Regulations aimed at mitigating non-CO2 effects through operational measures should be proven effective from a climate benefit standpoint, fair from an economic impact on the operator's standpoint, and operationally feasible/acceptable/manageable. An Advisory Board will federate external organisations who want to take part in the CICONIA results.