
The ambition of PRYSTINE is to strengthen and to extend traditional core competencies of the European industry, research and universities in smart mobility and in particular the electronic component and systems and cyber-physical systems domains. PRYSTINE's target is to realize Fail-operational Urban Surround perceptION (FUSION) which is based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. Therefore, PRYSTINE's high-level goals are: 1. Enhanced reliability and performance, reduced cost and power of FUSION components 2. Dependable embedded control by co-integration of signal processing and AI approaches for FUSION 3. Optimized E/E architecture enabling FUSION-based automated vehicles 4. Fail-operational systems for urban and rural environments based on FUSION PRYSTINE will deliver (a) fail-operational sensor-fusion framework on component level, (b) dependable embedded E/E architectures, and (c) safety compliant integration of Artificial Intelligence (AI) approaches for object recognition, scene understanding, and decision making within automotive applications. The resulting reference FUSION hardware/software architectures and reliable components for autonomous systems will be validated in in 22 industrial demonstrators, such as: 1. Fail-operational autonomous driving platform 2. An electrical and highly automated commercial truck equipped with new FUSION components (such as LiDAR, Radar, camera systems, safety controllers) for advanced perception 3. Highly connected passenger car anticipating traffic situations 4. Sensor fusion in human-machine interfaces for fail-operational control transition in highly automated vehicles PRYSTINE’s well-balanced, value chain oriented consortium, is composed of 60 project partners from 14 different European and non-European countries, including leading automotive OEMs, semiconductor companies, technology partners, and research institutes.
For the purpose of creating digitalisation and automation solutions Arrowhead Tools adresses engineering methodologies and suitable integrated tool chains. With the global aim of substantial reduction of the engineering costs for digitalisation/automation solutions. Thus the Arrowhead Tools vision is: - Engineering processes and tool chains for cost efficient developments of digitalization, connectivity and automation systems solutions in various fields of application For the further and wider commercialisation of automation and digitalisation services and products based on SOA, Arrowhead Framework and similar technologies there is a clear need for engineerings tools that integrates existing automation and digitalisation engineering procedures and tool with SOA based automation/digitalisation technology. For this purpose the Arrowhead Tool’s grand challenges are defined as: - Engineering costs reduction by 40-60% for a wide range of automation/digitalisation solutions. - Tools chains for digitalisation and automation engineering and management, adapted to: 1. existing automation and digitalisation engineering methodologies and tools 2. new IoT and SoS automation and digitalisation engineering and management tools 3. security management tools - Training material and kits for professional engineers The results will create impact on: - Automation and digitalisation solution market - Automation and engineering efficiency and the SSBS market - Automation and digitalisation security - Competence development on engineering of automation and digitalisation solution
REFORM (pRinted Electronics FOR the circular econoMy) sets out to address the environmental and sustainability challenges around conventional surface mounted and embedded functional electronics. The project aims to accelerate and guide the development of a new European green functional electronics supply chain. It seeks to use ecodesign principles to ensure that functional electronics can be produced that meet multiple application requirements for technological performance and compliance, while also meeting societal and environmental needs for sustainability. To achieve this, REFORM will develop environmentally benign electronic ‘building blocks’ focusing on green, bio-derived adhesives, conductive inks and flexible substrates. These will be integrated into industry-led functional electronics systems and supported by innovations in conformance testing and material recovery methods. Taking a holistic approach to development across the supply chain positions, this project is unique in not only achieving a step-change in technology compatible with industrial reality, but also producing prototype showcase systems with direct future impact on sustainability. REFORM brings together a world-leading consortium of academics, non-profit RTOs, industrial associations, private SME partners and large firms from eight countries across Europe. The project is female-led and coordinated by CIDETEC, a specialist RTO in surface engineering and energy storage based in Spain with a strong track record of leading large collaborative European projects. By combining the consortium’s unique and complementary expertise, REFORM aims to give Europe an innovation lead in green functional electronics, enhancing European competitiveness, and helping meet the ambitions for the European Green Deal. The immediate outcome of REFORM will be three demonstrators: a green smart logistics tag, a green embedded wireless sensor and a microsupercapacitor, taking the project from TRL 2/3 to TRL 5.