The GOAL project provides a platform that fosters an ecosystem of games and applications that helps people stay motivated to lead socially engaged, physically and cognitively active lifestyles. The platform will benefit both players and third-party game developers. Players get to play their favourite games while at the same time working on a social and active lifestyle. Where certain GOAL games or applications will reward users for healthy behaviour, others allow the user to spend their earned GOAL Coins on virtual or real rewards. GOAL applications can reward among other, social interactions, physical activity, cognitive training, teamwork, and competition. Game developers choosing to integrate with the GOAL platform benefit by being able to leverage an easy to use platform that, when integrated into their games, provides out-of-the-box added value for their users’ healthy lifestyle. By leveraging the GOAL platform, game developers can focus on their strengths: to develop fun, engaging experiences for their users. The GOAL platform provides a set of services to integrated games and health apps. First, the platform supports a complete virtual reward system in which applications function as coin generators, coin spenders or both. Second, the platform provides generic, adaptive personalized goal-setting that apps and games can leverage to automatically provide the most relevant challenge to their users. Third, an integrated motivational agent helps users achieving their health-, or in-game goals. Last, the platform includes a social marketplace that fosters social interactions among the GOAL community. The GOAL platform has the potential to open up a new market in which health behaviour change components can be fully integrated in real, fun and engaging games. Game developers can focus on developing emerging experiences, while behaviour change experts provide the benefits in the GOAL platform.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::29856affbf2160477a731ecefad119bd&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::29856affbf2160477a731ecefad119bd&type=result"></script>');
-->
</script>
Increasing demand from the growing and aging population can be assuaged by ever closer safe human-robot collaboration (HRI): to improve productivity, reduce health limitations and provide services. HRI and safety are both major topics in the Work Programme. Safety regulations will be a barrier to cobot deployment unless they are easy to access, understand and apply. COVR collates existing safety regulations relating to cobots in e.g. manufacturing and fills in regulatory gaps for newer cobot fields e.g. rehabilitation to present detailed safety assessment instructions to coboteers. Making the safety assessment process clearer allows cobots to be used with more confidence in more situations, increasing the variety of cobots on the market and the variety of services cobots can offer to the general population. TRYG provides a one-stop shop which uses a common approach to safety assessment and is valid across all fields and applications. TRYG will provide clear and simple online access to best-practice safety testing protocols via a user-friendly decision tree, guided by questions about the cobot and its intended behaviours. Resulting application-specific testing protocols specify how to assess safety and document compliance with regulations. We support coboteers by providing safety-relevant services based in well-equipped facilities at each partner site. TRYG services cover all stages of cobot development from design through final system sign-off to safety in use and maintenance, provided through consultancy, risk analysis, actual testing, workshops, courses, demonstrations, etc. – all designed to inspire people to increase cobot safety. All TRYG elements will be beta-tested by external cobot developers etc. financed by FSTP. By using project elements “live”, these FSTP beneficiaries not only develop their cobots further towards market, but also contribute their knowledge to the TRYG system and provide valuable feedback to both partners and standards developers.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d536a113b2796d124b8057daf44547e4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d536a113b2796d124b8057daf44547e4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0cd4c4b4a83ae2d582631a88864ee8bf&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0cd4c4b4a83ae2d582631a88864ee8bf&type=result"></script>');
-->
</script>
Injuries and diseases affecting the nervous system pose significant challenges for patients and impose substantial socioeconomic burdens. Digital technologies, such as artificial intelligence (AI) and robotics, hold great promise in revolutionizing recovery processes owing to their robustness, adaptability, and ability to assimilate diverse patient information. Despite this potential, current evidence suggests that these technologies have not fully met expectations. We propose two primary reasons for this discrepancy: (1) the absence of robot-based therapy in established clinical guidelines that therapists follow systematically, and (2) the suboptimal implementation of crucial features in therapeutic interventions—specifically, tasks should be tailored, intensive, optimally challenging, allow movement variability, and foster high patient engagement. In essence, interventions should be personalized to each patient's unique condition and requirements. TAILOR aims to bridge this gap by offering invaluable insights and knowledge to the next generation of researchers. This knowledge will empower them to comprehend the core principles of robotic technology, leading to the development of highly personalized therapies that deliver long-term functional effects and significantly enhance treatment outcomes. This shift is pivotal for the widespread and definitive integration of robotics into rehabilitation practices. TAILOR represents a unique system for collecting comprehensive data on the therapy process, and using AI methods to extract knowledge and to design controllers for automated therapy. We expect that these AI-driven controllers will enable rehabilitation to be tailored to a neuromotor status of a specific patient to a degree not possible before, automatically adjusting to all the aforementioned factors. The result will be a more efficient, comfortable, and optimally challenging therapy, which will allow a boost to the functional recovery of these patients.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e56cf1f0ba6999cc97df9b0a6ab64a29&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e56cf1f0ba6999cc97df9b0a6ab64a29&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::2664c519b8760e8454bdf3daf57514b9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::2664c519b8760e8454bdf3daf57514b9&type=result"></script>');
-->
</script>