ISNI: 0000000120974740
FundRef: 501100001831 , 501100002984
The objective of the present proposal is to advance the state of the art of Organic Rankine Cycles (ORC) to assist Europe achieve its goal for energy sustainability. Current ORC design methods rely on numerical models that use inaccurate assumptions and neglect variable operating conditions. Hence, the specific goal, of this proposal, is to develop advance engineering tools to characterize and minimize the impact of aleatory and epistemic uncertainties during the design phase of ORC based machines. The first part of the project targets the integration of uncertainty quantification techniques with: 1) thermodynamic model of an ORC cycle and; 2) aerodynamic model of the turbine. The objective is to provide performance predictions with confidence margins that facilitate reliable design decisions. The numerical results will be validated with data from a new ORC facility at TU Delft. Additionally, innovative Bayesian inference techniques will use experimental data to infer the confidence margins of the parameters used in the model. The second phase aims to quantify the impact of a variable heat sources in the performance of the cycle and its consequent effect on the aerodynamic efficiency of the turbine. With an accurate prediction of the probabilistic density function of the turbine’s boundary conditions, robust optimization method will be developed to maximize the turbine’s performance over the complete operational range. All the tools will be developed in open access to foster academic collaboration and motivate engineers to consider and minimize uncertainties in the early design phase of energy systems.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c3eb32b6285e72e7fd37619301124b2b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c3eb32b6285e72e7fd37619301124b2b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6646123579684032f8221d3803ab6722&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6646123579684032f8221d3803ab6722&type=result"></script>');
-->
</script>
Genome editing is an essential tool for life sciences. Recent ground-breaking discovery in microbiology drew our attention to the genome editing ability of bacteria (CRISPR). Since its discovery, CRISPR has revolutionized the way of editing a genome. Despite its wide use, CRISPR-genome editing has limitations, especially in the use for medical applications. Numerous studies have shown that it suffers from the off-target effect. Its use is also restricted by its particular sequence requirement and its poor accessibility to a structured genome. Furthermore, recent studies suggested that it might act as a virulence factor within human cells. These limitations demand new genome editing tools. This proposal sets out to understand the molecular mechanism of Tetrahymena DNA elimination. This naturally occuring genome editing is mediated by a eukaryotic RNA system (Twi1). This system uses an entirely different mechanism from CRISPR and has potential to perform more effectively. I will first investigate how small RNA-loaded Twi1 (“target searcher”) recognizes its target and whether its performance exceeds other target searchers including CRISPR/Cas9. I will use single-molecule fluorescence for high resolution observations and develop a high-throughput single-molecule method for transcriptome-wide understanding. Second, I aim to identify a Twi1-related DNA nuclease(s) that carries out DNA elimination. I will use cutting-edge tools of single-molecule pull-down and multi-color FRET together with mass spectrometry. The nanoscopic understanding of a searcher (Twi1) and the identification of a nuclease will help create a new genome editing tool (e.g. a fusion of Twi1 and the nuclease) that potentially perform better than Cas9. Thereby, this fundamental study on “mighty RNA” will make a long-term impact for applications in science and technology. To realize this ambitious project, I will utilize my experience of studying small RNAs (funded by ERC Starting Grant).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b9699714f6df577d4daf0ee9a942be24&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b9699714f6df577d4daf0ee9a942be24&type=result"></script>');
-->
</script>
Chip-scale magnetometers come in several flavors, the most common being silicon Hall-effect plates that integrate easily with electronics. However, these devices only detect 1D fields, are asymmetric between X-Y and Z directions, and cannot work in extreme temperatures. My goal is to leverage my expertise in micromachining and wide-bandgap semiconductor Hall-plates to realize magnetometers with a unique "3D" microstructure that uses 10% of the space of existing "3x1D" sensors, and is 3-10x more accurate. This enables new products for 3D navigation in autonomous microsystems such as biomedical implants, power monitoring, and nanosatellites. This proposal will involve the development of the inverted pyramid device through crystallographic etching of CMOS silicon to expose the crystal plane at 54.7°. This enables higher angular accuracy and avoids fabrication misalignment or packaging errors. The also supports direct GaN and other 3D Material integration with CMOS chips. In parallel, the host group, the Electronics Instrumentation(EI) laboratory at TU Delft, will develop the CMOS integrated circuit for front-end amplification and switching scheme of the sensor to detect all three components of the field from a singular device. The EI lab is top-ranked in circuits design and complements my sensor development activities seamlessly. The final year of the project will focus on testing these chips packaged together and development of a integrated single chip with both sensor and circuit to reveal improved performance with the use of graphene as the device layer. This project will open up future work with (ultra) wide-bandgap material integration using GaN and/or Diamond to enable extreme-environment navigation sensors with exotic applications in high temperature environments. The project will improve my career prospects as a tenure-track professor with training in circuits, teaching and tenure-track professional development at TU Delft.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::271a0b0db52352873b3b12c6ef65363b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::271a0b0db52352873b3b12c6ef65363b&type=result"></script>');
-->
</script>
Moore’s Law has dominated the trajectory of nanotechnology for the last half century; consistently pushing towards nanocomponents with decreasing size in x, y and z dimensions. It is widely predicted that Moore’s Law will eventually come to an end in 2025 when nanocomponents start to approach the size of individual atoms. Many wonder what kind of nanotechnology can we expect in the “post-Moore” world. Rather than asking how much smaller we can go, EARS will ask how big can we make nano-technology? Imagine we could manufacture extreme-aspect-ratio metamaterials which are only hundreds of atoms thick in z but extend out to meter scales in x and y. Even further, consider covering these meter-sized sheets in nanoscale patterning to give them exceptional material properties not found anywhere in nature or science.. Remarkably, these types of extreme-aspect-ratio metamaterials are increasingly at the heart of many future breakthrough initiatives ranging in functionalities from ultra-fast sails for space-exploration, to sensors that can detect the smallest fundamental forces of physics. EARS will combine my unique expertise in nanofabrication and high-precision optomechanics experiments to realize a cutting-edge platform that opens radical trajectories in unmanned space exploration. My novel approach will allow me to manufacture the highest aspect-ratio metamaterials ever produced and to reliably interface their dynamics with some of the most precise optical controls to date. EARS will herald a new frontier of nanotechnology that has the potential to revolutionize several breakthrough fields of science through metamaterials innovation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a769bbec0094f66b4364a8f9b4d0eb9a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::a769bbec0094f66b4364a8f9b4d0eb9a&type=result"></script>');
-->
</script>