
ZIKAlliance is a multidisciplinary project with a global "One Health" approach, built: on a multi-centric network of clinical cohorts in the Caribbean, Central & South America; research sites in countries where the virus has been or is currently circulating (Africa, Asia, Polynesia) or at risk for emergence (Reunion Island); a strong network of European and Brazilian clinical & basic research institutions; and multiple interfaces with other scientific and public health programmes. ZIKAlliance will addrees three key objectives relating to (i) impact of Zika virus (ZIKV) infection during pregnancy and short & medium term effects on newborns, (ii) associated natural history of ZIKV infection in humans and their environment in the context of other circulating arboviruses and (iii) building the overall capacity for preparedness research for future epidemic threats in Latin America & the Caribbean. The project will take advantage of large standardised clinical cohorts of pregnant women and febrile patients in regions of Latin America and the Caribbean were the virus is circulating, expanding a preexisting network established by the IDAMS EU project. I will also benefit of a very strong expertise in basic and environmental sciences, with access to both field work and sophisticated technological infrastructures to characterise virus replication and physiopathology mechanisms. To meet its 3 key objectives, the scientific project has been organised in 9 work packages, with WP2/3 dedicated to clinical research (cohorts, clinical biology, epidemiology & modeling), WP3/4 to basic research (virology & antivirals, pathophysiology & animal models), WP5/6 to environmental research (animal reservoirs, vectors & vector control) , WP7/8 to social sciences & communication, and WP9 to management. The broad consortium set-up allow gathering the necessary expertise for an actual interdisciplinary approach, and operating in a range of countries with contrasting ZIKV epidemiological status.
Biofuels are one of few options for decarbonizing transport in the short to medium term. However, they are often criticised for indirect land use change (ILUC), which is critical due to lack of high quality agricultural land and increasing world population. At the same time, significant contaminated land areas remain unused. CERESiS aims to provide a win-win sustainable solution to both issues by facilitating land decontamination through phytoremediation, growing energy crops to produce clean biofuels. In the longer term, this will increase the land available for agriculture, while producing non-ILUC biofuel. The project is based on three pillars. The phytoremediation pillar will identify a range of promising energy crops, focusing on key contaminants worldwide. They will be trialed in North, South, Eastern Europe and Brazil, with samples characterised and converted to biofuels. The technological pillar will optimize two clean biofuel conversion technologies, Supercritical Water Gasification & Fast Pyrolysis integrated with novel contaminant separation technologies, focusing on eliminating, stabilising or retrieving the contaminants in an easy to manage form. The Decision Support pillar will develop an open access, modular and expandable Decision Support System able to identify optimal solutions for each application. It will incorporate land, phytoremediation, technological, economic, environmental parameters providing critical information to stakeholders & policy makers on the suitability of combinations of phytoremediation strategies and conversion technologies for particular sites, contaminants, environmental restrictions etc. It will include Techno-economic analysis of pathways, LCA & LCC, supply chain optimization, and performance assessment against SDG goals. Partners from five EU countries, Ukraine, Brazil and Canada representing the entire value chain collaborate for the development and assessment of the integrated pathways.