
Sample return missions (SRMs) are a critical next step in our exploration of the Solar System and are identified as strategic missions by international space agencies. Europe has a very strong legacy in the curation and research of precious extraterrestrial materials. To maintain European leadership and ensure high-level involvement in future SRMs, a dedicated European Sample Curation Facility (ESCF) to receive and curate returned samples from the Moon, asteroids and Mars, is of critical importance. Euro-CARES will focus on 5 key themes for developing a ESCF: o Planetary Protection- protocols and methods for future SRMs o Instrumentation and Analytical Methods- in the fields of cosmo/geochemistry and biosciences o Facilities and Infrastructures- to curate sensitive extraterrestrial or biological materials o Analogue Materials- that are most appropriate and can be used in ‘end to end’ SRM planning o Portable Receiving Technologies- used to move samples whilst retaining scientific integrity and bio-containment (for Mars samples) Using the 5 key themes Euro-CARES will: 1) Evaluate and critically assess the state of the art within Europe and internationally to identify critical requirements for the ESCF 2) Determine and verify European readiness levels to identify where investment is required and opportunities for European leadership in scientific and engineering fields related to curating extraterrestrial samples 3) Engage with scientific, industrial, governmental and public stakeholders through community workshops, conferences, publications and educational opportunities 4) Deliver recommendations and roadmaps defining the steps necessary to deliver a ESCF to ensure high-level involvement in future ESA and international SRMs Euro-CARES comprises a team of scientists and engineers from across Europe with internationally recognised expertise in astrobiology, biosciences, cosmo/geochemistry, extraterrestrial sample curation, planetary protection and space exploration.
The Milky Way-Gaia Doctoral Network (MWGaiaDN): Revealing the Milky Way (MW) with Gaia - Excellent science, Extending techniques, Enhancing people skills, Effecting the next revolution in European led astronomy through leadership in astrometric-based science. What: Gaia, ESA’s major space mission launched in Dec 2013, is now in its extended mission to map some two billion stars in the MW. It’s upcoming data releases , that will provide chemical and physical annotation of the earlier positional releases, present major challenges in terms of complexity and size, hence research training to deliver a full science exploitation is essential, ensuring that Gaia is the `game changer’ for astronomy How: Our DN will link major partners responsible for the development of Gaia, to form an effective and unique training network combining the best research training with a range of academic and industrial placements, specialist research and knowledge transfer workshops. It will develop and train a cohort of young researchers through a set of key science projects pushing the Gaia data to its limits. Our DN will train 10 ESRs located across 10 European beneficiaries, benefiting from the participation of 13 associate partners. These include major industry (e.g. AirbusDS, TAS), at the forefront of Space and Information technologies; SME Industry (e.g. DAPCOM, Suil), innovating new technologies for Space and partners leading the development of next generation astrometry missions outside of Europe (NAOJ). Relevance: It will shape the delivery of training in astrometry and the study of the MW across Europe: delivering key insights into the structure and formation of our Galaxy; delivering the roadmap for the next generation of astrometric space telescopes; equipping the ESRs with skills to drive the next innovative steps in this crucial area of space discovery, as well as enabling them to contribute to the future, growth and challenges of the big data industry and commerce. MWGaiaDN
The landscape of future ground-based European astronomical research infrastructures expected to start in the 2030s is broad and diverse, ranging from low-frequency radio (SKAO), to the optical (ELT, EST), all the way to cosmic rays (CTAO) and gravitational waves (Einstein Telescope). There are two glaring omissions, however. The first is a sensitive, high resolution next-generation facility operating at (sub-)millimeter wavelengths (0.35-10 mm), a crucial observing window for the study of a broad range of astrophysical objects, from our Solar System to the Milky Way, nearby galaxies, and the distant universe. The second is that currently planned facilities are not truly prepared to operate in a low carbon emissions future, meeting the needs of the research community and the aspirations of the EU for carbon-neutrality. This project, consolidating the plans for the 50-meter Atacama Large Aperture Submillimeter Telescope (AtLAST), directly addresses both needs, providing solutions that will inform other observatories along the way, especially our partners ESFRI landmark (ESO-ELT) and project (EST). Our ambition is to harness European knowhow and cooperate on a global scale to revolutionise our understanding of the (sub-)mm universe, while pushing observational astronomy towards a greener future. Strengthened by a H2020-funded design study and an engaged community of about 200 researchers worldwide, we have produced science cases, telescope conceptual designs, and plans for a sustainable, off-grid power system. We are now ready to consolidate the AtLAST concept, prototype and test our technology solutions, perform a full lifecycle assessment of the facility, and to expand our user community. By the end of this project, AtLAST will have increased the technology readiness level of its crucial components and undergone preliminary design review, ready to move the project to its implementation phase.
A critical need for the future of space exploration is the ability to run artificial intelligence (AI) algorithms in situ under the harsh conditions of space. In recent years AI has been revolutionising industrial processes and everyday activities primarily because the computing power has reached a level that enables these algorithms to function. On the ground this is primarily due to the enormous investments in the development of high-performance graphical processing units (GPU) and of the optimised software needed for them. These are delicate devices that cannot be deployed in the harsh conditions of space and the transistor density of the components of a GPU would be too extreme to resist the radiations present in space. ASAP takes on the task of using processors that can sustain the radiation environment of space to transfer to space operation AI algorithms that so far could only be run on the ground. ASAP will use the most advanced space-hardiness proven processors and develop the software needed to run AI algorithms on them. ASAP will show proof of principle functionality and will reach TRL-4. ASAP focuses on five goals: 1) Working towards the identification and implementation of Machine Learning algorithms for the next generation space applications: a suite of candidate algorithms has been identified and will be evaluated during the project for their possible deployment to space; 2) Identification and development of a computing platform for ML algorithms producing a prototype hardware using only components that can operate under space conditions; 3) Definition of a validation plan and its execution in a laboratory validation campaign reaching TRL-4; 4) Implementation of a virtual environment to provide support to the development of ML algorithms; 5) Transforming the future development of technologies and scientific instrumentation for space science and exploration missions bringing artificial intelligence to space missions.