
FundRef: 501100011104
ISNI: 0000000122960625 , 0000000120970205
RRID: RRID:SCR_011104
Wikidata: Q43452
FundRef: 501100011104
ISNI: 0000000122960625 , 0000000120970205
RRID: RRID:SCR_011104
Wikidata: Q43452
Welfare states, in general, aim to mitigate social inequalities; however, in differentiating rights among social groups, their institutional architecture may further deepen pre-existing disparities. In the field of healthcare, this phenomenon has been coined as healthcare system segmentation; that is, the co-existence of different and independent healthcare arrangements, each of them targeting distinct social groups. Particularly prevalent in the Global South, healthcare system segmentation is largely neglected by the scholarship, and the few existing studies focus on contemporary manifestations of the phenomenon, while its origin, evolution, and reasons for existence remain unexplored. To fill this gap, the project (HESS) aims at investigating the emergence and development of healthcare system segmentation in twelve South American countries from a comparative and historical perspective. First, it will describe and analyse healthcare system segmentation’s (a) emergence and expansion, (b) inclusion and exclusion of social groups, (c) cross-country variation, and (d) temporal distribution. Second, it will explain whether the extent of segmentation observed within and across countries can be explained by economic, political, social, and/or policy-field specific factors. To do so, HESS will construct a novel dataset on the historical development of healthcare system segmentation in the region. This data will be made publicly available on a newly developed website, fostering further research in the domain. Adopting document analysis, descriptive statistics, and qualitative comparative analysis (QCA), the project will enrich theoretical and empirical understandings of welfare states and healthcare systems of the Global South, as well as provide guidance for policy-making, especially in light of the increasing global call for Universal Health Coverage put forth by the Sustainable Development Goals and most recently by the COVID-19 pandemic.
Magnetoelectric (ME) composites have the potential to revolutionize current nanotechnologies due to their ability to simultaneously respond to external magnetic and electric stimuli. However, archetypical ME materials prepared on rigid supports show either small effects due to the clamping with the substrate (e.g., Si wafers) or require of extremely high voltages (in case ferroelectric –FE– substrates are employed). To overcome these drawbacks, MAGNUS proposes a comprehensive research program built on the disruptive idea of using strain-gradient (i.e., flexoelectricity), instead of homogeneous strain, to boost the properties of ME composites deposited onto rigid substrates. The project encompasses new strategies to grow ‘mechanically flexible’ nanoporous magnetostrictive materials (FeGa, FeCo, Co ferrite) and fill them with FE polymers (P(VDF-TrFE)), rendering new functionally graded composites, operated with magnetic/electric fields, that will surpass classical compositionally-graded materials. The project aims at using these composites for (i) ME (wireless) bone tissue engineering and (ii) functionally-graded magnetic recording media. MAGNUS will take advantage of (i) my previous experience on electrodeposited Fe-based alloys and spin-coated FE polymers, (ii) the strong background of the main Host Institution (UAB) on magnetism and (iii) the expertise of the Partner Organizations on ME materials for biomedicine (ETH Zürich) and the growth of porous oxides (Univ. Cambridge). MAGNUS will bring interesting cross-cutting outcomes in the field of magnetoelectricity, exploiting strain-gradient mediated ME effects to an unprecedented extent and settling the grounds to consolidate the use of these frontier materials in the newly launched “Horizon Europe” Framework Programme (2021-2027). Besides the fascinating science to be unveiled in MAGNUS, the project will offer me the possibility to create a prestigious network which will reinforce my professional status in science.
Drug-resistant infections are one of the greatest threats facing humanity. Antimicrobial resistance (AMR) causes over 700.000 deaths each year. Furthermore, AMR is associated to reduced quality of life, increased hospitalization periods and medical costs. Misuse and over-prescription of antibiotics for human or animal treatment are one of the drivers of AMR. At the same time, the development of new antibiotics is virtually nonexistent. Hence, developing fast diagnostic methods to identify the optimal treatment is key to effectively fight AMR and increase survival rates of patients encountering life-threatening infections. So far, diagnostics rely on bacterial cultures, leading to slow turnaround times, which are linked to the preventive administration of broad-spectrum antibiotics, often inefficient and leading to worse disease outcomes and spread of AMR. Novel approaches such as DNA PCR-based diagnostic panels or next generation sequencing methods have been recently proposed to address this issue. However, they are target a limited number of pathogens and genes or require expensive equipment and highly-trained personnel. Furthermore, they require a culture step to reach detection levels, usually lasting a few hours, that can be critical for serious conditions. Recently, using technology derived from ERC StG and PoC grants, we designed a method to concentrate, purify, and isolate bacterial RNA in just 5 minutes. Here, we seek to develop and validate these tools, combined with a rapid RNA chip array with single-molecule resolution, to provide a culture-free, fast, and highly sensitive alternative to bacterial infection diagnostics from direct blood samples. Once developed, ResisCHIP will provide a tailor-made diagnostic kit with the capacity to identify thousands of genes and pathogens from a blood sample in less than 2 hours, allowing the rapid selection of the best treatment, improving AMR stewardess, and becoming a significant breakthrough in AMR diagnostics.
Crop wild relatives (CWR) are wild plant taxa closely related to a crop. They represent an important source of genetic diversity for the improvement of agronomic traits. In the context of the One Health Initiative, temperate fruit trees are essential for human nutrition and health, yet CWR resources have hitherto been underused. Moreover, fruit tree long lifespan and a current production dominated by a few cultivars make them particularly vulnerable to the effects of global changes. To address this challenge, the FRUITDIV project will monitor, characterise, use, and conserve the diversity of emblematic fruit tree CWR, with a particular emphasis on Malus, Pyrus and Prunus. To better characterise the genetic and phenotypic diversity of CWR fruit trees and identify favourable traits for future introgression into cultivars, FRUITDIV will use a combination of floristic, ethnogeography and population genomics on genebanks and historical European hotspots of diversity. We will then develop new multiomics-based breeding strategies that combine marker-assisted introgression for traits of interest (e.g. resilience, resistance to pests and diseases, fruit quality) with pangenomic prediction and a reduction of CWR-associated genetic load. In addition to breeding programs, FRUITDIV will also work with networks of farmers and associations to help characterise CWR progeny in various pedo-climatic conditions in Europe. An European-wide online platform that provides genotyping and phenotyping data for free will be implemented to promote the use of CWR genitors by breeders and farmers and help disseminate plant material of interest for various usages and cultivation systems. Overall, the FRUITDIV multi-actor approach involving geneticists, forestry officers, germplasm curators, farmers and citizens, will foster the in- and ex-situ conservation of CWR and promote sustainable agricultural practices across Europe.