
NEBULA aims to provide the foundations for a common future-proof transceiver technology platform with ultra-high bandwidth capabilities offered by a CMOS compatible toolkit and tailored towards meeting performance, cost and energy metrics in both inter-DCI coherent and intra-DCI ASIC co-packaged optics. NEBULA will be investing in the established bandwidth- and energy saving credentials of plasmonic modulator solutions together with the functional digital processing portfolio of neuromorphic optical reservoir computing engines towards painting the landscape of the next-coming disruption in transceiver evolution, tailoring them in System-in-Package prototype assemblies that can intersect with the challenging framework of both inter- and intra-DCI segments. NEBULA target to demonstrate i) a fully-functional 8-channel 112Gbaud 16QAM C-band transceiver prototype, offering an aggregate capacity of 3.2Tbps and requiring just 2.65W per single 400Gbps wavelength, providing in this way an energy efficiency of only 6.625pJ/bit with energy savings of 93% compared to current 200Gbps and 19W-consuming pluggable optics and ii) a fully-functional sub-Volt 8-channel 112Gbaud PAM4 O-band transmitter co-packaged with a data generating ASIC from Mellanox, offering a 1.6Tbps aggregate capacity with up to 37% energy savings compared to the estimated power requirements of respective Si-photonic-based co-packaged solutions.
Using fibre sensor networks, distributed information can be gathered even from places that are difficult or even impossible to be reached by other means. However, so far, such distributed fibre sensing networks are not capable of providing access to distributed chemical information along the fibre. In particular, highly selective and sensitive information on the concentration of various gases along the fibre cannot be obtained on a routine basis despite being desirable and needed in many different application scenarios. It is therefore tempting to explore the potential of integrating innovative optical gas sensing nodes along optical fibres, towards their massive deployment in existing telecom infrastructures. New developments in optical gas spectroscopy have opened up new prospects for remote gas sensing applications, addressing the limitations of current analytical methods in terms of sensitivity, ease-of-use and miniaturization. Nevertheless, there are important challenges to overcome before such a joint use of the fibers network for both communication and gas sensing becomes possible. GASPOF addresses these challenges, contributing to the development of the optical infrastructure of the future, where the communications network also acts as a large-scale distributed multi-parameter sensor. Focus will be put on two different optical techniques for gas sensing using the fiber-optics network: laser-based PTS and LHR. Both techniques will be advanced and integrated with the existing optical fibers network infrastructure. In parallel, we will investigate the possibility of using coherent OTDR for distributed gas sensing, while a reduced-cost approach for acoustic sensing will also be designed for measuring physical parameters of interest (e.g. vibrations) in addition to gas sensing. The GASPOF system configurations will demonstrate their performance and capabilities in important 4 application use cases.
MOICANA aims to deploy a versatile, low-cost and large-volume manufacturing transmitter PIC technology by monolithically integrating InP QD laser structures on a passive SiN waveguide platform and demonstrating a whole new series of high-performance cooler-less transmitter modules for a broad range of applications. MOICANA will invest in the best-in-class materials for the active and passive photonic functions, synergizing InP QD laser structures with the low-loss and temperature-tolerant SiN waveguide platform. It will grow InP QD layers directly on Si substrates and will proceed to Selective Area Growth on SiN chips, aiming at the fabrication and deployment of a whole new series of transmitter modules as monolithically integrated PICs: a) 25GbE SFP28 pluggable Directly Modulated Laser (DML), b) a WDM 100GbE QSFP28 pluggable DML, c) Externally Modulated Lasers, and d) a coherent tunable laser source. In this effort, MOICANA will deploy sophisticated integrated InP QD-on-SiN structures including 25Gb/s DMLs, low-linewidth DFBs and electro-optic modulators and will combine them into versatile and highly scalable transmitter layouts exploiting the rich and low-loss passive function portfolio of the SiN waveguide platform. Its transmitter PIC prototypes will be demonstrated in a broad range of applications in the areas of Data Center Interconnects, 5G mobile fronthaul and coherent communications, highlighting its versatility perspectives and its powerful credentials to form the transmitter technology for many-years-to-go. Finally, MOICANA’s technology will be supported by an EDA software design kit library and PDKs that will be deployed withint its duration, paving the way for a standardized and fabless PIC transmitter eco-system with immediate market take-up capabilities.
C-SERVEES aims to boost a resource-efficient circular economy in the electrical and electronic (E&E) sector through the development, testing, validation and transfer of new circular economic business models (CEBMs) based on systemic eco-innovative services that include: (1) eco-leasing of EEE, (2) product customization, (3) improved WEEE management, and (4) ICT services to support the other eco-services. ICT tools (relying on QR codes) will be developed as the driver of the proposed eco-innovative services to take full advantage of the potential and synergies of two major revolutions of our time: the circular economy and the Industry 4.0. The project will thus contribute to transform the E&E sector into circular and 4.0, raising new opportunities for end-users (such as their involvement in design or the access to a product as a service) and for social and solidarity economy (conducted by NGOs, like EMAUS, which employ people at risk of social exclusion to repair and prepare WEEE for re-use). The techno-economic, environmental and social viability of the new CEBMs will be validated through demonstrations dealing with four target products belonging to different EEE categories: large household appliances, IT equipment, telecommunications equipment, and consumer equipment. These EEE categories together account for 77% of WEEE collected in the EU. The project will result in an estimated economic benefit of 57.03 M€ over the period 2022-2026, which taking into account the project budget (8.03 M€) yields a ROI ~ 7.1. Specifically, the project will generate in the mid-term an economic benefit of 28.4 M€/year, with about 355 green employees (including direct and indirect jobs) and a total reduction of 2,620 tonnes CO2 eq/year. C-SERVEES (10 Member States and Turkey, including industry, end-users and researchers, ensures that strategic, design and implementation decisions) will be in line with business realities and set the foundation for realistic market-ready solutions.