Powered by OpenAIRE graph
Found an issue? Give us feedback
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
22 Projects, page 1 of 5
  • Funder: European Commission Project Code: 850937
    Overall Budget: 5,055,820 EURFunder Contribution: 4,997,440 EUR

    A realistic approach to increase the efficiency of photovoltaic (PV) devices above the Shockley-Queisser single-junction limit is the construction of tandem devices. PERCISTAND focuses on the development of advanced materials and processes for all thin film perovskite on chalcogenide tandem devices. This tandem configuration is at an early stage of development today. The PERCISTAND emphasis is on 4-terminal tandem solar cell and module prototype demonstration on glass substrates, but also current- and voltage-matched 2-terminal proof-of-concept device structures are envisaged. Key research activities are the development and optimization of top wide band gap perovskite and bottom low band gap CuInSe2 devices, suitable transparent conductive oxides, and integration into tandem configurations. The focus is on obtaining high efficiency, stability and large-area manufacturability, at low production cost and environmental footprint. Efficiency target is 30 % at cell level, and 25 % at module level. Reliability and stability, tested in line with International Electrotechnical Commission (IEC) standards, must be similar as commercially available PV technologies. High manufacturability means that all technologies applied are scalable to 20×20 cm2, using sustainable and low-cost materials and processes. The cost and environmental impact will be assessed in line with International Organization for Standardization (ISO), and must be competitive with existing commercial PV technologies. Such a tandem device significantly outperforms not only the stand-alone perovskite and chalcogenide devices, but also best single-junction silicon devices. The development will be primarily on glass substrates, but also applicable to flexible substrates and thus interesting for building integrated photovoltaic (BIPV) solutions, an important market for thin film PV. Hence, the outcome has high potential to strengthen and regain the EU leadership in thin film PV research and manufacturing.

    more_vert
  • Funder: European Commission Project Code: 643476
    Overall Budget: 20,847,800 EURFunder Contribution: 20,817,800 EUR

    COMPARE aims to harness the rapid advances in molecular technology to improve identification and mitigation of emerging infectious diseases and foodborne outbreaks. To this purpose COMPARE will establish a “One serves all” analytical framework and data exchange platform that will allow real time analysis and interpretation of sequence-based pathogen data in combination with associated data (e.g. clinical, epidemiological data) in an integrated inter-sectorial, interdisciplinary, international, “one health” approach. The framework will link research, clinical and public health organisations active in human health, animal health, and food safety in Europe and beyond, to develop (i) integrated risk assessment and risk based collection of samples and data, (ii) harmonised workflows for generating comparable sequence and associated data, (iii) state-of-the-art analytical workflows and tools for generating actionable information for support of patient diagnosis, treatment, outbreak detection and -investigation and (iv) risk communication tools. The analytical workflows will be linked to a flexible, scalable and open-source data- and information platform supporting rapid sharing, interrogation and analysis of sequence-based pathogen data in combination with other associated data. The system will be linked to existing and future complementary systems, networks and databases such as those used by ECDC, NCBI and EFSA. The functionalities of the system will be tested and fine tuned through underpinning research studies on priority pathogens covering healthcare-associated infections, food-borne disease, and (zoonotic) (re-) emerging diseases with epidemic or pandemic potential. Throughout the project, extensive consultations with future users, studies into the barriers to open data sharing, dissemination and training activities and studies on the cost-effectiveness of the system will support future sustainable user uptake.

    more_vert
  • Funder: European Commission Project Code: 244514
    more_vert
  • Funder: European Commission Project Code: 736937
    Overall Budget: 4,582,350 EURFunder Contribution: 3,945,350 EUR

    M-Cube aims at changing the paradigm of High-Field MRI and Ultra High-Field antennas to offer a much better insight on the human body and enable earlier detection of diseases. Our main objective is to go beyond the limits of MRI clinical imaging and radically improve spatial and temporal resolutions. The clinical use of High-field MRI scanners is drastically limited due to the lack of homogeneity and to the Specific Absorption Rate (SAR) of the Radio Frequency (RF) fields associated with the magnetic resonance. The major way to tackle and solve these problems consists in increasing the number of active RF antennas, leading to complex and expensive solutions. M-Cube solution relies on innovative systems based upon passive metamaterial structures to avoid multiple active elements. These systems are expected to make High-Field MRI fully diagnostically relevant for physicians. To achieve these expectations, M-Cube consortium will develop a disruptive metamaterial antenna technology. This we will able us to tackle both the lack of homogeneity and SAR barriers. Metamaterials are composite structured manmade materials designed to produce effective properties unavailable in nature (e.g. negative optical index). They allow us to tailor electromagnetic waves at will. Thus, the scientifically ambitious idea is to develop antennas based on this unique ability for whole body coil. This technological breakthrough will be validated by preclinical and clinical tests with healthy volunteers. M-Cube gathers an interdisciplinary consortium composed of academic leaders in the field, eight universities, and two promising SMEs. Physicists, medical doctors and industrial actors will work closely all along the implementation of the project to guarantee the success this novel approach, a “patient-centered” solution which will pave the way for a more accurate diagnosis in the context of personalized medicine and will enable to detect a disease much earlier that is currently possible.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-23-MRS0-0019
    Funder Contribution: 29,964 EUR

    We propose a conceptual design study of an innovative 10-m class wide-field spectroscopic survey telescope (WST) with simultaneous operation of a large field-of-view (5 sq. degree) and high multiplex (20,000) multi-object spectrograph facility with both medium and high resolution modes (MOS), and a giant panoramic integral field spectrograph (IFS). The ambitious WST top-level requirements place it far ahead of existing and planned facilities. In just 5 years of operation, the WST MOS will target 250 million galaxies and 25 million stars at medium resolution + 2 million stars at high resolution, and 4 billion spectra with the WST IFS. Through spectroscopic characterization, WST will potentiate the understanding of the data from many other huge imaging surveys that merely detect and classify sources. WST will achieve transformative results in most areas of astrophysics: e.g. the nature and expansion of the dark Universe, the formation of first stars and galaxies and their role in the cosmic reionisation, the study of the dark and baryonic material in the cosmic web, the baryon cycle in galaxies, the formation history of the Milky Way and dwarf galaxies in the Local Group, characterization of exoplanet hosts, and the characterization of transient phenomena. WST telescope and instruments will be designed as an integrated system and mostly use existing technology, aiming to minimize its carbon footprint and impact on local environment. Our ambition is to make WST the next large ESO project after the 40m ELT. ESO is the major inter-governmental organization for European astronomy with a unique suite of large telescopes in Chile. We will perform the study together with Australian colleagues, who have an ongoing strategic partnership with ESO and plan to apply soon for full membership. We have formed a large consortium of very experienced institutes plus ESO, representing 9 European countries and Australia. The team brings 60 years of in-kind staff effort to the study.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
1 Organizations, page 1 of 1

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.