Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY NC
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY NC
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Logistic Activity Recognition Challenge (LARa Version 03) – A Motion Capture and Inertial Measurement Dataset

Authors: Niemann, Friedrich; Reining, Christopher; Moya Rueda, Fernando; Nair, Nilah Ravi; Oberdiek, Philipp; Bas, Hülya; Spiekermann, Raphael; +4 Authors

Logistic Activity Recognition Challenge (LARa Version 03) – A Motion Capture and Inertial Measurement Dataset

Abstract

LARa Version 03 is a freely accessible logistics-dataset for human activity recognition. In the “Innovationlab Hybrid Services in Logistics” at TU Dortmund University, two picking and one packing scenarios with 16 subjects were recorded using an optical marker-based Motion Capturing system (OMoCap), Inertial Measurement Units (IMUs), and an RGB camera. Each subject was recorded for one hour (960 minutes in total). All the given data have been labelled and categorised into eight activity classes and 19 binary coarse-semantic descriptions, also called attributes. In total, the dataset contains 221 unique attribute representations. The dataset was created according to the guideline of the following paper: “A Tutorial on Dataset Creation for Sensor-based Human Activity Recognition”, PerCom, 2023 DOI: 10.1109/PerComWorkshops56833.2023.10150401 The LARa Version 03 contains a new Annotation tool for OMoCap and RGB Videos, namely, the Sequence Attribute Retrieval Annotator (SARA). SARA, developed and modified based on the LARa Version 02 annotation tool, includes desirable features and attempts to overcome limitations as found in the LARa annotation tool. Furthermore, few features were included based on the explorative study of previously developed annotation tools, see journal. In alignment with the LARa annotation tool, SARA focuses on OMoCap and video annotations. However, it is to be noted that SARA was not intended to be a video annotation tool with features such as subject tracking and multiple subject annotations. Here, the video is considered to be a supporting input to the OMoCap annotation. We would recommend other tools for pure video-based multiple-human activity annotation, including subject tracking, segmentation, and pose estimation. There are different ways of installing the annotation tool: Compiled binaries (executable files) for Windows and Mac can be directly downloaded from here. Python users can install the tool from https://pypi.org/project/annotation-tool/ (PyPi): “pip install annotation-tool”. For more information, please refer to the “Annotation Tool - Installation and User Manual”. Upgrade: Annotation tool (SARA) added (for Windows and MacOS, including an installation and user manual) Neural Networks updated (can be used with the annotation tool) OMoCap data: Annotation errors corrected Annotations reformatted, fitting the SARA annotation tool “additional annotated data” extended “Markers_Exports” added IMU data (MbientLab and MotionMiners Sensors) Annotation errors corrected README file (protocol) updated and extended If you use this dataset for research, please cite the following paper: “LARa: Creating a Dataset for Human Activity Recognition in Logistics Using Semantic Attributes”, Sensors 2020, DOI: 10.3390/s20154083. If you use the Mbientlab Networks, please cite the following paper: “From Human Pose to On-Body Devices for Human-Activity Recognition”, 25th International Conference on Pattern Recognition (ICPR), 2021, DOI: 10.1109/ICPR48806.2021.9412283. For any questions about the dataset, please contact Friedrich Niemann at friedrich.niemann@tu-dortmund.de.

Acknowledgement: The work on this publication was supported by Deutsche Forschungsgemeinschaft (DFG) in the context of the project Fi799/10-2, HO2403/14-2 "Transfer Learning for Human Activity Recognition in Logistics".

Related Organizations
Keywords

Accelerometer, Human Activity Recognition, Annotation, Intertial Measurement Unit, Attribute-based Representation, Neural Network, Annotationtool, Convolutional Neural Network, Logistics, Warehousing, Motion Capturing, Dataset

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 40
    download downloads 14
  • 40
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
40
14