Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Humans exploit robust locomotion by improving the stability of control signals

Authors: Santuz, Alessandro; Brüll, Leon; Ekizos, Antonis; Schroll, Arno; Eckardt, Nils; Kibele, Armin; Schwenk, Michael; +1 Authors

Humans exploit robust locomotion by improving the stability of control signals

Abstract

Background Is the control of movement less stable when we walk or run in challenging settings? Intuitively, one might answer that it is, given that adding constraints to locomotion (e.g. rough terrain, age-related impairments, etc.) makes movements less stable. Here, we investigated how young and old humans synergistically activate muscles during locomotion when different perturbation levels are introduced. Of these control signals, called muscle synergies, we analyzed the stability over time. Surprisingly, we found that perturbations and older age force the central nervous system to produce muscle activation patterns that are more stable. These outcomes show that robust locomotion in challenging settings is achieved by increasing the stability of control signals, whereas easier tasks allow for more unstable control. How to use the data set This supplementary data set contains: a) the metadata with anonymized participant information, b) the raw electromyographic (EMG) data acquired during locomotion, c) the touchdown and lift-off timings of the recorded limb, d) the filtered and time-normalized EMG, e) the muscle synergies extracted via non-negative matrix factorization and f) the code written in R (R Found. for Stat. Comp.) to process the data, including the scripts to calculate the Maximum Lyapunov Exponents of motor primitives. In total, 476 trials from 86 participants are included in the supplementary data set. The file “participant_data.dat” is available in ASCII and RData (R Found. for Stat. Comp.) format and contains: Code: the participant’s code Experiment: the experimental setup in which the participant was involved (E1 = walking and running, overground and treadmill; E2 = walking and running, even- and uneven-surface; E3 = unperturbed and perturbed walking, young and old) Group: the group to which the participant was assigned (see above for the details) Sex: the participant’s sex (M or F) Speed: the speed at which the recordings were conducted in [m/s] (two values separated by a comma mean that recordings were done at two different speeds, i.e. walking and running) Age: the participant’s age in years (participants were considered old if older than 65 years, but younger than 80) Height: the participant’s height in [cm] Mass: the participant’s body mass in [kg]. The files containing the gait cycle breakdown are available in RData (R Found. for Stat. Comp.) format, in the file named “CYCLE_TIMES.RData”. The files are structured as data frames with 30 rows (one for each gait cycle) and two columns. The first column contains the touchdown incremental times in seconds. The second column contains the duration of each stance phase in seconds. Each trial is saved as an element of a single R list. Trials are named like “CYCLE_TIMES_P0020,” where the characters “CYCLE_TIMES” indicate that the trial contains the gait cycle breakdown times and the characters “P0020” indicate the participant number (in this example the 20th). Please note that the overground trials of participants P0001 and P0009 and the second uneven-surface running trial of participant P0048 only contain 22, 27 and 23 cycles, respectively. The files containing the raw, filtered and the normalized EMG data are available in RData (R Found. for Stat. Comp.) format, in the files named “RAW_EMG.RData” and “FILT_EMG.RData”. The raw EMG files are structured as data frames with 30000 rows (one for each recorded data point) and 14 columns. The first column contains the incremental time in seconds. The remaining thirteen columns contain the raw EMG data, named with muscle abbreviations that follow those reported in the Materials and Methods section of this Supplementary Materials file. Each trial is saved as an element of a single R list. Trials are named like “RAW_EMG_P0053_OG_02”, where the characters “RAW_EMG” indicate that the trial contains raw emg data, the characters “P0053” indicate the participant number (in this example the 53rd), the characters “OW” indicate the locomotion type (E1: OW=overground walking, OR=overground running, TW=treadmill walking, TR=treadmill running; E2: EW=even-surface walking, ER=even-surface running, UW=uneven-surface walking, UR=uneven-surface running; E3: NW=normal walking, PW=perturbed walking), and the numbers “02” indicate the trial number (in this case the 2nd). The 10 trials per participant recorded for each overground session (i.e. 10 for walking and 10 for running) were concatenated into one. The filtered and time-normalized emg data is named, following the same rules, like “FILT_EMG_P0053_OG_02”. The files containing the muscle synergies extracted from the filtered and normalized EMG data are available in RData (R Found. for Stat. Comp.) format, in the files named “SYNS_H.RData” and “SYNS_W.RData”. The muscle synergies files are divided in motor primitives and motor modules and are presented as direct output of the factorization and not in any functional order. Motor primitives are data frames with 6000 rows and a number of columns equal to the number of synergies (which might differ from trial to trial) plus one. The rows contain the time-dependent coefficients (motor primitives), one column for each synergy plus the time points (columns are named e.g. “Time, Syn1, Syn2, Syn3”, where “Syn” is the abbreviation for “synergy”). Each gait cycle contains 200 data points, 100 for the stance and 100 for the swing phase which, multiplied by the 30 recorded cycles, result in 6000 data points distributed in as many rows. This output is transposed as compared to the one discussed above to improve user readability. Each set of motor primitives is saved as an element of a single R list. Trials are named like “SYNS_H_P0012_PW_02”, where the characters “SYNS_H” indicate that the trial contains motor primitive data, the characters “P0012” indicate the participant number (in this example the 12th), ), the characters “PW” indicate the locomotion type (see above), and the numbers “02” indicate the trial number (in this case the 2nd). Motor modules are data frames with 13 rows (number of recorded muscles) and a number of columns equal to the number of synergies (which might differ from trial to trial). The rows, named with muscle abbreviations that follow those reported in the Materials and Methods section of this Supplementary Materials file, contain the time-independent coefficients (motor modules), one for each synergy and for each muscle. Each set of motor modules relative to one synergy is saved as an element of a single R list. Trials are named like “SYNS_W_P0082_PW_02”, where the characters “SYNS_W” indicate that the trial contains motor module data, the characters “P0082” indicate the participant number (in this example the 82nd) ), the characters “PW” indicate the locomotion type (see above), and the numbers “02” indicate the trial number (in this case the 2nd). Given the nature of the NMF algorithm for the extraction of muscle synergies, the supplementary data set might show non-significant differences as compared to the one used for obtaining the results of this paper. The files containing the MLE calculated from motor primitives are available in RData (R Found. for Stat. Comp.) format, in the file named “MLE.RData”. MLE results are presented in a list of lists containing, for each trial, 1) the divergences, 2) the MLE, and 3) the value of the R2 between the divergence curve and its linear interpolation made using the specified amount of points. The divergences are presented as a one-dimensional vector. MLE are one number like the R2 value. Trials are named like “MLE_P0081_EW_01”, where the characters “MLE” indicate that the trial contains MLE data, the characters “P0081” indicate the participant number (in this example the 81st) ), the characters “EW” indicate the locomotion type (see above), and the numbers “01” indicate the trial number (in this case the 1st). All the code used for the preprocessing of EMG data, the extraction of muscle synergies and the calculation of MLE is available in R (R Found. for Stat. Comp.) format. Explanatory comments are profusely present throughout the scripts (“SYNS.R”, which is the script to extract synergies, “fun_NMF.R”, which contains the NMF function, “MLE.R”, which is the script to calculate the MLE of motor primitives and “fun_MLE.R”, which contains the MLE function).

This version contains the anonymized participant data in both ASCII and RData format.

Keywords

locomotion, neuroscience, muscle synergies, lyapunov

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
    download downloads 21
  • 14
    views
    21
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
14
21