Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilization of high-performance concrete mixtures for advanced manufacturing technologies

Authors: Sucharda, Oldrich; Gandel, Radoslav; Cmiel, Petr; Jerabek, Jan; Bilek, Vlastimil;

Utilization of high-performance concrete mixtures for advanced manufacturing technologies

Abstract

The presented experimental program focuses on the design of high-performance dry concrete mixtures, which could find application in advanced manufacturing technologies, for example additive solutions. The combination of high-performance concrete (HPC) with advanced or additive technologies provides new possibilities for constructing architecturally attractive buildings with high material requirements. The purpose of this study was to develop a dry mixture made from high-performance concrete that could be distributed directly in a advanced or additive technologies of solutions in the pre-prepared condition with all input materials (except for water) in order to reduce both financial and labor costs. This research specifically aimed to improve the basic strength characteristics, including mechanical (assessed using compressive strength, tensile splitting strength, and flexural strength tests) and durability properties (assessed using tests of resistance to frost, water, and defrosting chemicals), of hardened mixtures, with partial insight into the rheology of fresh mixtures (consistency as assessed using the slump-flow test). Additionally, the load-bearing capacity of the selected mixtures in the form of specimens with concrete reinforcement were tested using a three-point bending test. A reference mixture with two liquid plasticizers—the first based on polycarboxylate and polyphosphonate and the second based on polyether carboxylate—was modified using a powdered plasticizer, based on the polymerization product Glycol, to create a dry mixture; the reference mixture was compared with the developed mixtures with respect to the above-mentioned properties. In general, the results show that the replacement of the aforementioned liquid plasticizers by a powdered plasticizer based on the polymerization product Glycol in the given mixtures is effective up to 5 % (of the cement content) with regard to the mechanical and durability properties. The presented work provides an over-view of the compared characteristics, which will serve as a basis for future research into the development of additive manufacturing technologies in the conditions of the Czech Republic while respecting the principles of sustainable construction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average