Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Data from: Gardner-like crossover from variable to persistent force contacts in granular crystals

Authors: Kool, Lars; Charbonneau, Patrick; Daniels, Karen;

Data from: Gardner-like crossover from variable to persistent force contacts in granular crystals

Abstract

We report experimental evidence of a Gardner-like crossover from variable to persistent force contacts in a two-dimensional, bidisperse granular crystal by analyzing the variability of both particle positions and force networks formed under uniaxial compression. Starting from densities just above the freezing transition, and for variable amounts of additional compression, we compare configurations to both their own initial state, and to an ensemble of equivalent, reinitialized states. This protocol shows that force contacts are largely undetermined when the density is below a Gardner-like crossover, after which they gradually transition to being persistent, being fully so only above the jamming point. We associate the disorder that underlies this effect to the size of the microscopic asperities of the photoelastic disks used, by analogy to other mechanisms that have been previously predicted theoretically.

This dataset originated as digital images taken using both a polariscope (for photoelasticity) and unpolarized light. The data was processed using custom Matlab scripts to identify all particle locations in each image and to measure the similarity in photoelastic images. 

The files are saved as Matlab .mat files, which can also be opened by Octave or Python, both of which are open-source, as well as raw data in .jpg image format.

Keywords

photoelasticity, granular materials, FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
1
Average
Average
Average
1