
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This repository contains the version 1 code for the below journal paper.Accelerating Computation of Steiner Trees on GPUsRajesh Pandian M · Rupesh Nasre · N.S. Narayanaswamy Note: The latest Code is available at https://github.com/mrprajesh/gpuSteiner Prerequisites- CUDA 10.2- GCC 7.3 with O3- OGDF Installation https://ogdf.uos.de/ shipIJPP├── 2approxCpu2.cpp CPU Code for KMB├── cScript.sh Script to generate KMBCPU Time├── CUDAMST.cu //MST Codes├── CUDAMST.h //MST Codes├── CUDAMST_kernel.cu //MST Codes├── gpuSteiner3_sk2_new0_2Dpull1.cu 1pull├── gpuSteiner3_sk2_new0_2Dpull2.cu 2pull├── gpuSteiner3_sk2_new0_2Dpull3.cu 3pull├── gpuSteiner3_sk2_new0_2Dpull3_sh.cu 3pullShMem├── gpuSteiner5-1.cu KMBGPU-OPT├── gpuSteiner6-oddAgain.cu double-barrel├── kmb.cpp OGDF's KMB. Need to build OGFD a priori.├── Makefile Compiles OGDF's KMB├── ogdf.v2020.02.zip OGDF. Instruction to build https://github.com/ogdf/ogdf/blob/master/doc/build.md├── optimize│ ├── BellmanFord5.cu Edge-based│ ├── BellmanFord6.cu Topology-driven TD│ ├── BellmanFord7_DD2.cu Data-driven DD│ ├── BellmanFord7_warp.cu Memoization│ └── cScript.sh Script to run above 4 SSSP optimizations├── pace2018Winner PACE 2018 winner of heuristic track https://github.com/HeathcliffAC/SteinerTreeProblem│ ├── ***│ ├── run.sh Script to run pacewinner code with 30m timeout├── rCompare.sh Script file to compare 1pull,2pull,3pull,3pullShMem├── Readme.txt This file├── rScale.sh Script to run on Scalability instances GPU & CPU├── tcRun.sh Script to run KMBGPU-OPT├── tcJEA.sh Script to run OGDF KMB (i.e JEA's KMB)├── tcScale Scalability instances│ ├── Conv.cpp Converter from .gr to CSR format│ ├── HR-edges-t1000.gr instances in .gr and csr format│ ├── HR-edges-t1000.gr.txt│ ├── HR-edges-t1500.gr│ ├── HR-edges-t1500.gr.txt│ ├── HR-edges-t2000.gr│ ├── HR-edges-t2000.gr.txt│ ├── HR-edges-t2500.gr│ ├── HR-edges-t2500.gr.txt│ ├── HR-edges-t3000.gr│ ├── HR-edges-t3000.gr.txt│ ├── HR-edges-t3500.gr│ ├── HR-edges-t3500.gr.txt│ ├── HR-edges-t4000.gr│ ├── HR-edges-t4000.gr.txt│ ├── HR-edges-t4500.gr│ ├── HR-edges-t4500.gr.txt│ ├── HR-edges-t5000.gr│ ├── HR-edges-t5000.gr.txt│ ├── HR-edges-t500.gr│ └── HR-edges-t500.gr.txt└── tcSelected // Our Graph Suite instances ├── instance137.gr // instances in .gr and csr format ├── instance137.gr.txt ├── instance163.gr ├── instance163.gr.txt ├── instance181.gr ├── instance181.gr.txt ├── instance183.gr ├── instance183.gr.txt ├── instance185.gr ├── instance185.gr.txt ├── instance187.gr ├── instance187.gr.txt ├── instance189.gr ├── instance189.gr.txt ├── instance191.gr ├── instance191.gr.txt ├── instance193.gr ├── instance193.gr.txt ├── instance195.gr ├── instance195.gr.txt ├── instance197.gr ├── instance197.gr.txt ├── zalin37.gr ├── zalin37.stp.txt ├── zalue7080.gr ├── zalue7080.stp.txt ├── zHR-edges-t3000.gr └── zHR-edges-t3000.gr.txt
Steiner trees, Parallel algorithms, Approximation algorithms, Graphics Processing Units
Steiner trees, Parallel algorithms, Approximation algorithms, Graphics Processing Units
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 33 | |
downloads | 5 |