software . 2019

Supporting data and code for: Machine Learning analysis of protein-ligand interaction fingerprints (IF) extracted from tau-RAMD dissociation trajectories for inhibitors of HSP90

Kokh, Daria B.; Kaufmann, Tom; Kister, Bastian; Wade, Rebecca C.;
Open Source
  • Published: 27 Mar 2019
  • Publisher: Zenodo
Abstract
<p>Supporting data and code for the manuscript:</p> <p>&quot;Machine learning analysis of tauRAMD trajectories to decipher molecular determinants of drug-target residence times&quot; of&nbsp; Kokh DB, Kaufman T, Kister B, Wade RC., Front. Mol. Biosci., 24 May 2019 | <a href="https://doi.org/10.3389/fmolb.2019.00036">https://doi.org/10.3389/fmolb.2019.00036</a></p> <p>&nbsp;</p>
Subjects
free text keywords: Machine Learning, tauRAMD, drug-protein residence time, structure-kinetic relationship (SKRs), drug-target binding kinetics
Funded by
EC| K4DD
Project
K4DD
Kinetics for Drug Discovery (K4DD)
  • Funder: European Commission (EC)
  • Project Code: 115366
  • Funding stream: FP7 | SP1 | SP1-JTI
,
EC| PRACE
Project
PRACE
Partnership for Advanced Computing in Europe
  • Funder: European Commission (EC)
  • Project Code: 211528
  • Funding stream: FP7 | SP4 | INFRA
,
EC| HBP SGA2
Project
HBP SGA2
Human Brain Project Specific Grant Agreement 2
  • Funder: European Commission (EC)
  • Project Code: 785907
  • Funding stream: H2020 | SGA-RIA
Communities
FET H2020FET FLAG: HBP FET Flagship core project
FET H2020FET FLAG: Human Brain Project Specific Grant Agreement 2
Download fromView all 6 versions
Zenodo
Software . 2019
Provider: Datacite
Zenodo
Software . 2019
Provider: Datacite
Zenodo
Software . 2019
Provider: Datacite
Zenodo
Software . 2019
Provider: Datacite
Any information missing or wrong?Report an Issue