Actions
shareshare link cite add Please grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
See an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Research software . Software . 2021
Budget Constrained Machine Learning for Early Prediction of Adverse Outcomes for COVID-19 Patients
BCML-COVID19
Cadena Pico, Jose; Soper, Braden; Ray, Pryadip; Mguyen, Chanh; Chan, Ryan;
Cadena Pico, Jose; Soper, Braden; Ray, Pryadip; Mguyen, Chanh; Chan, Ryan;
Open Source
Published: 23 Aug 2021
Publisher: DOE CODE
Abstract
Background: Machine learning (ML) based risk stratification models of Electronic Health records (EHR) data may help to optimize treatment of COVID-19 patients, but are often limited by their lack of clinical interpretability and cost of laboratory tests. We develop a ML based tool for predicting adverse outcomes based on EHR data to optimize clinical utility under a given cost structure. This cohort study was performed using deidentified EHR data from COVID-19 patients from ProMedica Healthcare in northwest Ohio and southeastern Michigan. Methods: We tested performance of various ML approaches for predicting either increasing ventilatory support or mortality and the set of model features under a budget constraint was optimized via exhaustive search across all combinations of features. Results: The optimal sets of features for predicting ventilation under any budget constraint included demographics and comorbidities (DCM), basic metabolic panel (BMP), D-dimer, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), CRP, brain natriuretic peptide (BNP), and procalcitonin and for mortality included DCM, BMP, complete blood count, D-dimer, LDH, CRP, BNP, procalcitonin and ferritin. Conclusions: This study presents a quick, accurate and cost-effective method to evaluate risk of deterioration for patients with SARS-CoV-2 infection at the time of clinical evaluation.
Subjects by Vocabulary
Medical Subject Headings: health care economics and organizations
Medical Subject Headings: health care economics and organizations
See an issue? Give us feedback
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.