Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data on different types of green spaces and their accessibility in the seven largest urban regions in Finland

Authors: Heikinheimo, Vuokko; Tiitu, Maija; Viinikka, Arto;

Data on different types of green spaces and their accessibility in the seven largest urban regions in Finland

Abstract

This repository contains data described in the article "Data on different types of green spaces and their accessibility in the seven largest urban regions in Finland" (Heikinheimo et al. 2023) and used in the research article "Associations of neighborhood-level socioeconomic status, accessibility, and quality of green spaces in Finnish urban regions" (Viinikka et al. 2023). This repository contains data on green space quality and path distances to different types of green spaces. The path distances represent green space accessibility using active travel modes (walking, cycling). The path distances were calculated using the pedestrian street network across the seven largest urban regions in Finland. We derived the green space typology from the Urban Atlas Data that is available across functional urban areas in Europe and enhanced it with national data on water bodies, conservation areas and recreational facilities and routes from Finland. We extracted the walkable street network from OpenStreetMap and calculated shortest paths to different types of green spaces using open-source Python programming tools. Network distances were calculated up to ten kilometers from each green space edge and the distances were aggregated into a 250 m x 250 m statistical grid that is interoperable with various statistical data from Finland. The geospatial data files representing the different types of green spaces, network distances across the seven urban regions, as well as the processing and analysis scripts are shared in an open repository. These data offer actionable information about green space accessibility in Finnish city regions and support the integration of green space quality and active travel modes into further research and planning activities. Data description article: Heikinheimo, V., Tiitu, M., & Viinikka, A. (2023). Data on different types of green spaces and their accessibility in the seven largest urban regions in Finland. Data in Brief, 50, 109458. https://doi.org/10.1016/j.dib.2023.109458 Related research article: Viinikka, A., Tiitu, M., Heikinheimo, V., Halonen, J. I., Nyberg, E., & Vierikko, K. (2023). Associations of neighborhood-level socioeconomic status, accessibility, and quality of green spaces in Finnish urban regions. Applied Geography, 157, 102973. https://doi.org/10.1016/j.apgeog.2023.102973

The authors thank the HYVIÖ project team at the Finnish Environment Institute SYKE and Finnish Institute for Health and Welfare (THL). This work would not have been possible without open data from OpenStreetMap contributors, Finnish Environment Institute SYKE and the European Environment Agency (EEA), and open-source software from the open source developer community. Funding: This work was supported by the 'Lähiöohjelma' programme 2020-2022 at the Finnish Ministry of the Environment through the HYVIÖ project (Spatial information and residents' experiences for development of comfortable living environments, decision number VN/10679/2020-YM-3) and the Strategic Research Council (SRC) at Academy of Finland through the STYLE project (Healthy Lifestyles to Boost Sustainable Growth, project number 320402).

Keywords

green space quality, urban green space, spatial accessibility, environmental equity, open data, network distances

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 41
    download downloads 37
  • 41
    views
    37
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
41
37