Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Critical review of heat pump prototype operation and required modications

Authors: Alireza Zendehboudi; Schubert, Maike; Pe��a, Xabier; Gerber, Raphael;

Critical review of heat pump prototype operation and required modications

Abstract

TRI-HP EU project is aiming to develop trigeneration integrated solutions that combine heating, cooling and electricity generation, based on heat pumps running with natural refrigerants and using multiple renewable energy sources. This deliverable presents the experimental performance evaluations of the R744-ice heat pump, R290-ice heat pump, and R290-dual source heat pump. The R744-ice heat pump includes a rotary compressor coupled to an inverter, the tri-partite brazed plate gas cooler, an evaporator, an internal heat exchanger, an ejector, a throttling valve, and a liquid separator. The heat pump unit is designed with a capacity of 10 kW, 8 kW, and 10 kW under only domestic hot water, only space heating, and simultaneous domestic hot water and space heating modes to provide the tap water heating and space heating water up to 70 °C and 35 °C, respectively. The rst R290-ice heat pump prototype is designed with a capacity of 10 kW and consists of a scroll compressor with inverter, two plate heat exchangers in the heat sink side (desuperheater and condenser), an evaporator, an internal heat exchanger, and several expansion valves. A 10 kW R290-dual source heat pump is designed and manufactured to use both air and/or brine coming from geothermal boreholes as heat source/sink, allowing to test this unit under heating and cooling working modes. The R744-ice heat pump and R290-ice heat pump are studied at a steady state for only space heating operation, only domestic hot water operation, and simultaneous domestic hot water and space heating operation. The R290- dual source heat pump is investigated under heating and cooling conditions applying air and/or water as the heat source/sink. The effects of different operating parameters on the overall coefcient of performance, heat duty, and compressor energy consumption are analyzed in detail. The experimental results of the tested heat pumps show promising performances. The COP of R290-ice heat pump for space heating temperature 30/35 °C ranges between 4.4 and 5.4. However, the COP of the unit for domestic hot water with a set temperature of 65 °C drops to between 2.5 and 2.8. This is where the CO2-ice heat pump shows good results for high domestic hot water demand. In domestic hot water mode, the COP varies between 3.6 and 4.3 for set temperatures of 55 °C to 65 °C. The delivered heating capacity of the R290-dual source heat pump is slightly lower than the requirements under the design conditions. The coefcient of performance varies between 3.2 and 3.6, depending on the operating mode. After the performance evaluations of these prototypes, this deliverable provides and describes the limitations of the designed systems. It provides recommendations for the performance improvements to be implemented in the second experimental campaign.

Keywords

Heat pump, R290 (propane), R744 (CO2), ice slurry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 35
  • 11
    views
    35
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
11
35
Green