Downloads provided by UsageCounts
This paper explores the potential of image-to-image translation techniques in aiding the design of new hardware-based musical interfaces such as MIDI keyboard, grid-based controller, drum machine, and analog modular synthesizers. We collected an extensive image database of such interfaces and implemented image-to-image translation techniques using variants of Generative Adversarial Networks. The created models learn the mapping between input and output images using a training set of either paired or unpaired images. We qualitatively assess the visual outcomes based on three image-to-image translation models: reconstructing interfaces from edge maps, and collection style transfers based on two image sets: visuals of mosaic tile patterns and geometric abstract two-dimensional arts. This paper aims to demonstrate that synthesizing interface layouts based on image-to-image translation techniques can yield insights for researchers, musicians, music technology industrial designers, and the broader NIME community.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 10 | |
| downloads | 8 |

Views provided by UsageCounts
Downloads provided by UsageCounts