
Abstract. Advances in medical AI and data analytics require large amounts of patient data. Due to privacy concerns, such data is not always available. Synthetic data generation promises a solution to provide the required data despite privacy restrictions. In this paper, we therefore introduce SynMedRDF, an open-source tool to generate synthetic Electronic Health Records. It ensures clinical accuracy by using real-world probabilities and correlations. The data is output as an RDF knowledge graph, enabling structure- and semantics-aware sharing, linking, and analysis.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
