Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2022
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2020
License: CC 0
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: A changing climate is snuffing out post-fire recovery in montane forests

Authors: Rodman, Kyle; Veblen, Thomas; Battaglia, Mike; Chambers, Marin; Fornwalt, Paula; Holden, Zachary; Kolb, Thomas; +2 Authors

Data from: A changing climate is snuffing out post-fire recovery in montane forests

Abstract

This archive includes field data and various spatial datasets used in Rodman et al. (2020; Global Ecology and Biogeography). Individual datasets in the Dryad archive include the following: 1) Gridded climate data (annual actual evapotranspiration, annual climatic water deficit, growing season precipitation) for the 1981-2015 period and future climate projections (2021-2099). All climate data were spatially downscaled to c. 250 m. 2) Statistical models and outputs (.rds objects, example spatial models, and summaries of statistical outputs) 3) Terrain variables (60-m resolution) of topographic position index and heat load index. Soil available water capacity at a 4km-resolution. 4) Shapefiles of fire perimeters included in the study and the boundary of the study area (i.e., EPA Level III Ecoregion #21) 5) Field data summarized in this study including 1) 1301 individual field plots characterizing post-fire conifer seedling abundance, forest structure, and ground cover and 2) 717 destructively sampled seedlings dated to establishment/germination year. These data are a synthesis of five previously published studies that surveyed post-fire seedling abundance and the timing of seedling establishment, as well as previously unpublished data following the study design of Chambers et al. (2016). As methods of collection vary slightly among individual studies, we refer the user to the original published studies (listed below). See "README.txt" for a description of the processing and development of new datasets (i.e., gridded climate data, terrain variables, spatial models, and statistical models). Chambers, M. E., P. J. Fornwalt, S. L. Malone, and M. A. Battaglia. 2016. Patterns of Conifer Regeneration Following High Severity Wildfire in Ponderosa Pine ñ Dominated Forests of the Colorado Front Range. Forest Ecology and Management 378:57ñ67. Ouzts, J. R., Kolb, T. E., Huffman, D. W., and A. J. Sánchez Meador. 2015. Post-fire Ponderosa Pine Regeneration With and Without Planting in Arizona and New Mexico. Forest Ecology and Management 354:281ñ290. Rother, M. T., and T. T. Veblen. 2016. Limited Conifer Regeneration Following Wildfires in Dry Ponderosa Pine Forests of the Colorado Front Range. Ecosphere 7:e01594. Rother, M. T., and T. T. Veblen. 2017. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado. Forests 8:1-14. Rodman, K. C., Veblen, T. T., Chapman, T. B., Rother, M. T., Wion, A. P., and M. D. Redmond. 2020b. Limitations to Recovery Following Wildfire in Dry Forests of Southern Colorado and Northern New Mexico, USA. Ecological Applications 30:e02001.

Aim: Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is an important catalyst for change, investigation of post-fire vegetation response is crucial for understanding the potential for future conversions from forest to non-forest vegetation types. To better understand effects of wildfire and climate warming on forest recovery, we assessed the extent to which climate and terrain influence spatiotemporal variation in past and future post-fire tree regeneration. Location: Montane forests, Rocky Mountains, USA Time Period: 1981-2099 Taxa Studied: Pinus ponderosa; Pseudotsuga menziesii Methods: We developed a network of dendrochronological samples (n = 717) and field plots (n = 1301) from post-fire environments spanning a range of topographic and climatic settings. We then used boosted regression trees to predict annual suitability for post-fire seedling establishment and generalized linear mixed models to predict total post-fire seedling abundances, reconstructing recent trends in post-fire recovery and projecting future dynamics using three general circulation models (GCMs) under moderate and extreme emission scenarios. Results: Though 1981-2015 declines in growing season (April-September) precipitation were associated with declining suitability for seedling establishment, 2021-2099 trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), strongly tied to warming temperature and increased evaporative demand, was projected to increase throughout our study area. Our projections strongly suggest that future increases in CWD and an increased frequency of extreme drought will reduce post-fire seedling abundances. Main Conclusions: Our findings highlight the key roles of warming and drying in declines in forest resilience to wildfire. The striking differences in projections of post-fire recovery between moderate and extreme emissions scenarios suggest that the most extreme impacts on forest resilience in the latter part of the 21st century may be mitigated with aggressive emissions reductions in the next two decades.

See "README.txt" and metadata within the compressed archive files for usage notes. We encourage the user to contact 

Keywords

dry forests, Conifer Forests, Montane Zone, tree regeneration, western United States, wildfire

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 7
  • 32
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
32
7