
Breast cancer remains a serious global health issue. Leveraging the use of deep learning techniques, this study presents a custom Convolutional Neural Network (CNN) framework for the detection of breast cancer. With the specific objective of accurate classification of breast cancer, a framework is made to analyze high-dimensional medical image information. The CNN's architecture, which consists of specifically developed layers and activation components tailored for the categorization of breast cancer, is described in detail. Utilizing the BreakHis dataset, which comprises biopsy slide images of patients in a range of cancer stages, the model is trained and verified. Comparing our findings to conventional techniques, we find notable gains in sensitivity, specificity, and accuracy. Gray-Level Co-Occurrence Matrix (GLCM) features extracted from the BreakHis dataset was used to analyze the performance on sequential neural network, transfer learning and machine learning models. After analysis, we have proposed hybrid models of CNN-SVM, CNN-KNN, CNN-Logistic regression and achieved accuracy of about 95.2%.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
