
Traditional data monetization approaches face challenges related to data protection and logistics. In response, digital data marketplaces have emerged as intermediaries simplifying data transactions. Despite the growing establishment and acceptance of digital data marketplaces, significant challenges hinder efficient data trading. As a result, few companies can derive tangible value from their data, leading to missed opportunities in understanding customers, pricing decisions, and fraud prevention. In this paper, we explore both technical and organizational challenges affecting data monetization. Moreover, we identify areas in need of further research, aiming to expand the boundaries of current knowledge by emphasizing where research is currently limited or lacking.
Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Databases
Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Databases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
