Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/csr575...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PHOENI2X – A European Cyber Resilience Framework With Artificial-Intelligence-Assisted Orchestration, Automation & Response Capabilities for Business Continuity and Recovery, Incident Response, and Information Exchange

Authors: Fysarakis, Konstantinos; Lekidis, Alexios; Mavroeidis, Vasileios; Lampropoulos, Konstantinos; Lyberopoulos, George; Vidal, Ignasi Garcia-Milà; Terés i Casals, José Carles; +11 Authors

PHOENI2X – A European Cyber Resilience Framework With Artificial-Intelligence-Assisted Orchestration, Automation & Response Capabilities for Business Continuity and Recovery, Incident Response, and Information Exchange

Abstract

As digital technologies become more pervasive in society and the economy, cybersecurity incidents become more frequent and impactful. According to the NIS and NIS2 Directives, EU Member States and their Operators of Essential Services must establish a minimum baseline set of cybersecurity capabilities and engage in cross-border coordination and cooperation. However, this is only a small step towards European cyber resilience. In this landscape, preparedness, shared situational awareness, and coordinated incident response are essential for effective cyber crisis management and resilience. Motivated by the above, this paper presents PHOENI2X, an EU-funded project aiming to design, develop, and deliver a Cyber Resilience Framework providing Artificial-Intelligence-assisted orchestration, automation and response capabilities for business continuity and recovery, incident response, and information exchange, tailored to the needs of Operators of Essential Services and the EU Member State authorities entrusted with cybersecurity.

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
Funded by