
The structural maintenance of chromosomes (SMC) proteins are essential for successful chromosome transmission during replication and segregation of the genome in all organisms. SMCs are generally present as single proteins in bacteria, and as at least six distinct proteins in eukaryotes. The proteins range in size from approximately 110 to 170 kDa, and each has five distinct domains: amino- and carboxy-terminal globular domains, which contain sequences characteristic of ATPases, two coiled-coil regions separating the terminal domains and a central flexible hinge. SMC proteins function together with other proteins in a range of chromosomal transactions, including chromosome condensation, sister-chromatid cohesion, recombination, DNA repair and epigenetic silencing of gene expression. Recent studies are beginning to decipher molecular details of how these processes are carried out.
Adenosine Triphosphatases, Evolution, Molecular, Multigene Family, Molecular Sequence Data, Animals, Humans, Cell Cycle Proteins, Amino Acid Sequence, Protein Structure, Quaternary, Chromosomes, Conserved Sequence, Protein Structure, Tertiary
Adenosine Triphosphatases, Evolution, Molecular, Multigene Family, Molecular Sequence Data, Animals, Humans, Cell Cycle Proteins, Amino Acid Sequence, Protein Structure, Quaternary, Chromosomes, Conserved Sequence, Protein Structure, Tertiary
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
