publication . Preprint . 2004

Polycyclic groups: A new platform for cryptology?

Eick, Bettina; Kahrobaei, Delaram;
Open Access English
  • Published: 03 Nov 2004
Abstract
Comment: 7 pages. submitted
Subjects
free text keywords: Mathematics - Group Theory
Download from

[1] I. Anshel, M. Anshel, and D. Goldfeld. An algebraic method for public-key cryptography. Math. Res. Lett., 6:287-291, 1999.

[2] G. Baumslag, F. B. Cannonito, D. J. S. Robinson, and D. Segal. The algorithmic theory of polycyclicby-finite groups. J. Alg., 142:118 - 149, 1991.

[3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symb. Comput., 24:235 - 265, 1997.

[4] M. R. Bridson and J. Howie. Conjugacy of finite subsets in hyperbolic groups. submitted for publication, pages 1-30, 2003.

[5] M. Daberkow, C.Fieker, J. Klu¨ners, M. Pohst, K.Roegner, and K. Wildanger. Kant V4. J. Symb. Comput., 24:267 - 283, 1997.

[6] B. Eick and W. Nickel. Polycyclic - computing with polycyclic groups, 2000. A GAP 4 package.

[7] B. Eick and G. Ostheimer. On the orbit-stabilizer problem for integral matrix actions of polycyclic groups. Math. Comp. (Number 243), 72:1511-1529, 2003. [OpenAIRE]

[8] P. Garrett. Making, Breaking Codes: Introduction to Cryptology. Pearson Education, 2000.

[9] V. Gebhardt. A new approach to the conjugacy problem in garside groups. J. Symb. Comput., 2003. 6

[10] B. H¨ofling. Efficient multiplication algorithms for finite polycyclic groups. Submitted, 2004.

[11] J. L. Joan S. Birman, K.H. Ko. A new approach to the word and conjugacy problems in the braid groups. http://xxx.lanl.gov/abs/math.GT/9712211, pages 1-31, 1998. [OpenAIRE]

[12] C. Leedham-Green and L. Soicher. Collection from the left and other strategies. J. Symb. Comput., 9:665 - 675, 1990. [OpenAIRE]

[13] C. Leedham-Green and L. Soicher. Symbolic collection using deep thought. LMS J. Comput. Math., 1:9-24, 1998.

[14] C. C. Sims. Computation with finitely presented groups. Encyclopedia of Mathematics and its Applications, 48, Cambridge University Press, 1994.

[15] The GAP Group. GAP - Groups, Algorithms and Programming, 2000. Bettina Eick, Institut Computational Mathematics, TU Braunschweig, Pockelsstr. 14, 38106 Braunschweig, Germany E-mail address: beick@tu-bs.de Delaram Kahrobaei, Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS Scotland, UK E-mail address: delaram.kahrobaei@st-andrews.ac.uk URL: http://www-groups.mcs.st-and.ac.uk/∼delaram/

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue