publication . Preprint . 2020

A study of daytime convective vortices and turbulence in the martian Planetary Boundary Layer based on half-a-year of InSight atmospheric measurements and Large-Eddy Simulations

Spiga, Aymeric; Murdoch, Naomi; Lorenz, Ralph; Forget, François; Newman, Claire; Rodriguez, Sébastien; Pla-Garcia, Jorge; Viúdez-Moreiras, Daniel; Banfield, Don; Perrin, Clément; ...
Open Access English
  • Published: 03 May 2020
Abstract
Studying the atmospheric Planetary Boundary Layer (PBL) is crucial to understand the climate of a planet. The meteorological measurements by the instruments onboard InSight at a latitude of 4.5$^{\circ}$N make a uniquely rich dataset to study the active turbulent dynamics of the daytime PBL on Mars. Here we use the high-sensitivity continuous pressure, wind, temperature measurements in the first 400 sols of InSight operations (from northern late winter to midsummer) to analyze wind gusts, convective cells and vortices in Mars' daytime PBL. We compare InSight measurements to turbulence-resolving Large-Eddy Simulations (LES). The daytime PBL turbulence at the InSi...
Subjects
arXiv: Physics::Atmospheric and Oceanic PhysicsPhysics::Space PhysicsPhysics::Fluid Dynamics
free text keywords: Astrophysics - Earth and Planetary Astrophysics, Physics - Atmospheric and Oceanic Physics, Physics - Fluid Dynamics
Download from
58 references, page 1 of 4

Balme, M. R., Pathare, A. V., Metzger, S. M., Towner, M. C., Lewis, S. R., Spiga, A., Fenton, L., Renno, N. O., Elliot, H. M., Saca, F. A., Michaels, T., Russell, P., and Verdasca, J. A. (2012). Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on mars and earth. Icarus, 221(2):632{645. [OpenAIRE]

Banerdt, W. B., Smrekar, S. E., Ban eld, D., Giardini, D., Golombek, M., Johnson, C. L., Lognonne, P., Spiga, A., Spohn, T., Perrin, C., Staehler, S. C., co authors, and the InSight team (2020). Initial results from the InSight mission on mars. Nature Geoscience (in press).

Ban eld, D., Rodriguez-Manfredi, J. A., Russell, C. T., Rowe, K. M., Leneman, D., Lai, H. R., Cruce, P. R., Means, J. D., Johnson, C. L., Mittelholz, A., Joy, S. P., Chi, P. J., Mikellides, I. G., Carpenter, S., Navarro, S., Sebastian, E., Gomez-Elvira, J., Torres, J., Mora, L., Peinado, V., Lepinette, A., The TWINS Team, Hurst, K., Lognonne, P., Smrekar, S. E., and Banerdt, W. B. (2018). Insight auxiliary payload sensor suite (apss). Space Science Reviews, 215(1):4.

Ban eld, D., Spiga, A., and co authors (2020). The atmosphere of mars as observed by InSight. Nature Geoscience.

Chapman, R. M., Lewis, S. R., Balme, M., and Steele, L. J. (2017). Diurnal variation in martian dust devil activity. Icarus, 292:154{167. [OpenAIRE]

Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A., Kahanpaa, H., Bean, K. M., Cantor, B. A., Gheynani, B. T., Drube, L., Fisher, D., Harri, A.-M., Holstein-Rathlou, C., Lemmon, M. T., Madsen, M. B., Malin, M. C., Polkko, J., Smith, P. H., Tamppari, L. K., Weng, W., and Whiteway, J. (2010). Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research (Planets), 115(E14):E00E16.

Fenton, L., Reiss, D., Lemmon, M., Marticorena, B., Lewis, S., and Cantor, B. (2016). Orbital observations of dust lofted by daytime convective turbulence. Space Science Reviews, 203(1):89{ 142.

Fenton, L. K. and Lorenz, R. (2015). Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus, 260:246{262.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot., J.-P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104:24,155{24,176.

Giersch, S., Brast, M., Ho mann, F., and Raasch, S. (2019). Toward large-eddy simulations of dust devils of observed intensity: E ects of grid spacing, background wind, and surface heterogeneities. Journal of Geophysical Research: Atmospheres, 124(14):7697{7718. [OpenAIRE]

Golombek, M., co-authors (including A. Spiga), and the InSight team (2020). Geology of the InSight landing site, Mars. Nature Communications (in press).

Gomez-Elvira, J., Armiens, C., Castan~er, L., Dom nguez, M., Genzer, M., Gomez, F., Haberle, R., Harri, A.-M., Jimenez, V., Kahanpaa, H., Kowalski, L., Lepinette, A., Mart n, J., Mart nezFr as, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M. A., Peinado, V., Pen~a, A., Polkko, J., Ramos, M., Renno, N. O., Ricart, J., Richardson, M., Rodr guez-Manfredi, J., Romeral, J., Sebastian, E., Serrano, J., de la Torre Juarez, M., Torres, J., Torrero, F., Urqu , R., Vazquez, L., Velasco, T., Verdasca, J., Zorzano, M.-P., and Mart n-Torres, J. (2012). REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Science Reviews, 170:583{640. [OpenAIRE]

Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res., 82:4559{4574. [OpenAIRE]

Hinson, D. P., Patzold, M., Tellmann, S., Hausler, B., and Tyler, G. L. (2008). The depth of the convective boundary layer on Mars. Icarus, 198:57{66. [OpenAIRE]

Hinson, D. P., Tyler, D., Lewis, S. R., Patzold, M., Tellmann, S., Hausler, B., and Tyler, G. L. (2019). The Martian daytime convective boundary layer: Results from radio occultation measurements and a mesoscale model. Icarus, 326:105{122.

58 references, page 1 of 4
Abstract
Studying the atmospheric Planetary Boundary Layer (PBL) is crucial to understand the climate of a planet. The meteorological measurements by the instruments onboard InSight at a latitude of 4.5$^{\circ}$N make a uniquely rich dataset to study the active turbulent dynamics of the daytime PBL on Mars. Here we use the high-sensitivity continuous pressure, wind, temperature measurements in the first 400 sols of InSight operations (from northern late winter to midsummer) to analyze wind gusts, convective cells and vortices in Mars' daytime PBL. We compare InSight measurements to turbulence-resolving Large-Eddy Simulations (LES). The daytime PBL turbulence at the InSi...
Subjects
arXiv: Physics::Atmospheric and Oceanic PhysicsPhysics::Space PhysicsPhysics::Fluid Dynamics
free text keywords: Astrophysics - Earth and Planetary Astrophysics, Physics - Atmospheric and Oceanic Physics, Physics - Fluid Dynamics
Download from
58 references, page 1 of 4

Balme, M. R., Pathare, A. V., Metzger, S. M., Towner, M. C., Lewis, S. R., Spiga, A., Fenton, L., Renno, N. O., Elliot, H. M., Saca, F. A., Michaels, T., Russell, P., and Verdasca, J. A. (2012). Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on mars and earth. Icarus, 221(2):632{645. [OpenAIRE]

Banerdt, W. B., Smrekar, S. E., Ban eld, D., Giardini, D., Golombek, M., Johnson, C. L., Lognonne, P., Spiga, A., Spohn, T., Perrin, C., Staehler, S. C., co authors, and the InSight team (2020). Initial results from the InSight mission on mars. Nature Geoscience (in press).

Ban eld, D., Rodriguez-Manfredi, J. A., Russell, C. T., Rowe, K. M., Leneman, D., Lai, H. R., Cruce, P. R., Means, J. D., Johnson, C. L., Mittelholz, A., Joy, S. P., Chi, P. J., Mikellides, I. G., Carpenter, S., Navarro, S., Sebastian, E., Gomez-Elvira, J., Torres, J., Mora, L., Peinado, V., Lepinette, A., The TWINS Team, Hurst, K., Lognonne, P., Smrekar, S. E., and Banerdt, W. B. (2018). Insight auxiliary payload sensor suite (apss). Space Science Reviews, 215(1):4.

Ban eld, D., Spiga, A., and co authors (2020). The atmosphere of mars as observed by InSight. Nature Geoscience.

Chapman, R. M., Lewis, S. R., Balme, M., and Steele, L. J. (2017). Diurnal variation in martian dust devil activity. Icarus, 292:154{167. [OpenAIRE]

Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A., Kahanpaa, H., Bean, K. M., Cantor, B. A., Gheynani, B. T., Drube, L., Fisher, D., Harri, A.-M., Holstein-Rathlou, C., Lemmon, M. T., Madsen, M. B., Malin, M. C., Polkko, J., Smith, P. H., Tamppari, L. K., Weng, W., and Whiteway, J. (2010). Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research (Planets), 115(E14):E00E16.

Fenton, L., Reiss, D., Lemmon, M., Marticorena, B., Lewis, S., and Cantor, B. (2016). Orbital observations of dust lofted by daytime convective turbulence. Space Science Reviews, 203(1):89{ 142.

Fenton, L. K. and Lorenz, R. (2015). Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus, 260:246{262.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot., J.-P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104:24,155{24,176.

Giersch, S., Brast, M., Ho mann, F., and Raasch, S. (2019). Toward large-eddy simulations of dust devils of observed intensity: E ects of grid spacing, background wind, and surface heterogeneities. Journal of Geophysical Research: Atmospheres, 124(14):7697{7718. [OpenAIRE]

Golombek, M., co-authors (including A. Spiga), and the InSight team (2020). Geology of the InSight landing site, Mars. Nature Communications (in press).

Gomez-Elvira, J., Armiens, C., Castan~er, L., Dom nguez, M., Genzer, M., Gomez, F., Haberle, R., Harri, A.-M., Jimenez, V., Kahanpaa, H., Kowalski, L., Lepinette, A., Mart n, J., Mart nezFr as, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M. A., Peinado, V., Pen~a, A., Polkko, J., Ramos, M., Renno, N. O., Ricart, J., Richardson, M., Rodr guez-Manfredi, J., Romeral, J., Sebastian, E., Serrano, J., de la Torre Juarez, M., Torres, J., Torrero, F., Urqu , R., Vazquez, L., Velasco, T., Verdasca, J., Zorzano, M.-P., and Mart n-Torres, J. (2012). REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Science Reviews, 170:583{640. [OpenAIRE]

Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res., 82:4559{4574. [OpenAIRE]

Hinson, D. P., Patzold, M., Tellmann, S., Hausler, B., and Tyler, G. L. (2008). The depth of the convective boundary layer on Mars. Icarus, 198:57{66. [OpenAIRE]

Hinson, D. P., Tyler, D., Lewis, S. R., Patzold, M., Tellmann, S., Hausler, B., and Tyler, G. L. (2019). The Martian daytime convective boundary layer: Results from radio occultation measurements and a mesoscale model. Icarus, 326:105{122.

58 references, page 1 of 4
Any information missing or wrong?Report an Issue