publication . Preprint . 2019

Quest for topological superconductivity at superconductor-semiconductor interfaces

Frolov, S. M.; Manfra, M. J.; Sau, J. D.;
Open Access English
  • Published: 23 Dec 2019
Abstract
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
Subjects
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Materials Science, Condensed Matter - Superconductivity
Funded by
NSF| PIRE: Hybrid Materials for Quantum Science and Engineering (HYBRID)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1743717
  • Funding stream: Office of the Director | Office of International Science and Engineering
,
NSF| EAGER: BRAIDING: Majorana Bound States in Semiconductor Nanowire Networks
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1743972
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Materials Research
Download from
105 references, page 1 of 7

[1] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[2] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[3] A. Y. Kitaev, Annals of Physics 303, 2 (2003).

[4] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Reviews of Modern Physics 80, 1083 (2008).

[5] A. Stern and N. H. Lindner, Science 339, 1179 (2013).

[6] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Information 1, 15001 (2015).

[7] G. Volovik, Journal of Experimental and Theoretical Physics Letters 70, 609 (1999).

[8] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[9] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).

[10] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Physical review letters 105, 077001 (2010).

[12] Y. Oreg, G. Refael, and F. von Oppen, Physical review letters 105, 177002 (2010).

[13] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[14] K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. B 63, 144531 (2001). [OpenAIRE]

[15] F. Wilczek, Nature Physics 5, 614 (2009).

105 references, page 1 of 7
Abstract
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
Subjects
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Materials Science, Condensed Matter - Superconductivity
Funded by
NSF| PIRE: Hybrid Materials for Quantum Science and Engineering (HYBRID)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1743717
  • Funding stream: Office of the Director | Office of International Science and Engineering
,
NSF| EAGER: BRAIDING: Majorana Bound States in Semiconductor Nanowire Networks
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1743972
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Materials Research
Download from
105 references, page 1 of 7

[1] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[2] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[3] A. Y. Kitaev, Annals of Physics 303, 2 (2003).

[4] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Reviews of Modern Physics 80, 1083 (2008).

[5] A. Stern and N. H. Lindner, Science 339, 1179 (2013).

[6] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Information 1, 15001 (2015).

[7] G. Volovik, Journal of Experimental and Theoretical Physics Letters 70, 609 (1999).

[8] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[9] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).

[10] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Physical review letters 105, 077001 (2010).

[12] Y. Oreg, G. Refael, and F. von Oppen, Physical review letters 105, 177002 (2010).

[13] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[14] K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. B 63, 144531 (2001). [OpenAIRE]

[15] F. Wilczek, Nature Physics 5, 614 (2009).

105 references, page 1 of 7
Any information missing or wrong?Report an Issue