publication . Preprint . 2017

Theoretical and computational aspects of entanglement

Derksen, Harm; Friedland, Shmuel; Lim, Lek-Heng; Wang, Li;
Open Access English
  • Published: 19 May 2017
Abstract
Comment: 34 pages, 12 tables
Subjects
free text keywords: Quantum Physics, 15A69, 65K10, 81P40
Related Organizations
Download from
46 references, page 1 of 4

[1] S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing 9 (2013), 143-252.

[2] M. Aulbach, D. Markham and Mi. Murao,The maximally entangled symmetric state in terms of the geometric measure, New Journal of Physics, 12 (2010), pp. 073025.

[3] K.D. Andersen, E. Christiansen, A.R. Conn and M.L. Overton, An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms, SIAM J. Scient. Comp. 22 (2000), pp. 243-262. [OpenAIRE]

[4] S. Banach, U¨ ber homogene Polynome in (L2),' Studia Math., 7 (1938), pp. 36-44.

[5] D.J. Bates, J. D. Hauenstein, A.J. Sommese, and C.W. Wampler. Bertini: Software for Numerical Algebraic Geometry, Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004, ISBN 978-0-521-83378-3.

[7] S. Brierley, A. Higuchi , On maximal entanglement between two pairs in four-qubit pure states, Journal of Physics A: Mathematical and Theoretical 40(29) (2007), 8455.

[8] D. Cartwright, B. Sturmfels, The number of eigenvectors of a tensor, Linear Algebra Appl. 438 (2013), no. 2, 942-952.

[9] B. Chen, S. He, Z. Li, and S. Zhang, Maximum block improvement and polynomial optimization, SIAM J. OPTIM. 22 (2012), 87-107.

[10] L. Chen, A. Xu and H. Zhu, Computation of the geometric measure of entanglement for pure multiqubit states, Physical Review A 82, 032301, 2010.

[11] L. de Lathauwer, B. de Moor, and J. Vandewalle, On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324-1342.

[12] W. Du¨r, G. Vidal and J.I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A. 62 (2000), 062314.

[13] A. Einstein, B. Podolsky, and N. Rosen N, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, is. 10, (1935), 777-780. [OpenAIRE]

[14] L. Eld´en and B. Savas, A newton-grassmann method for computing the best multilinear rank-(r1, r2, r3) approximation of a tensor, SIAM Journal on Matrix Analysis and applications, 31 (2009), 248-271.

[16] S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, Front. Math. China, 8 (1) (2013), 19-40.

46 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue