publication . Preprint . 2017

Hamiltonian consistency of the gravitational constraint algebra under deformations

Ghersi, José Tomás Gálvez; Desrochers, Michael J.; Protter, Mason; DeBenedictis, Andrew;
Open Access English
  • Published: 11 Nov 2017
Abstract
Comment: 21 pages, 4 figures. Some details of the more complicated calculations may be found at https://github.com/josegalvez/HD-GR
Subjects
free text keywords: General Relativity and Quantum Cosmology, High Energy Physics - Theory, Mathematical Physics, 37K65, 70H40/5, 83C99, 83D05
Download from
42 references, page 1 of 3

[1] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17, 4 (2014) doi:10.12942/lrr-2014-4 [arXiv:1403.7377 [gr-qc]].

[2] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, no. 6, 061102 (2016) doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].

[3] C. P. Burgess, “The Cosmological Constant Problem: Why it's hard to get Dark Energy from Micro-physics,” doi:10.1093/acprof:oso/9780198728856.003.0004 arXiv:1309.4133 [hep-th].

[4] S. A. Hojman, K. Kuchar and C. Teitelboim, “Geometrodynamics Regained,” Annals Phys. 96 (1976) 88. doi:10.1016/0003-4916(76)90112-3

[5] C. Rovelli, “Constraint algebra in general relativity,” Nuov. Cim. B. (1986) 92:49. doi:10.1007/BF02729696

[6] P. A. M. Dirac, “The Hamiltonian form of field dynamics,” Can. J. Math. 3, 1 (1951). doi:10.4153/CJM1951-001-2

[7] R. Tibrewala, “Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance,” Class. Quant. Grav. 31, 055010 (2014) doi:10.1088/0264-9381/31/5/055010 [arXiv:1311.1297 [gr-qc]].

[8] M. Campiglia, R. Gambini, J. Olmedo and J. Pullin, “Quantum self-gravitating collapsing matter in a quantum geometry,” Class. Quant. Grav. 33, no. 18, 18LT01 (2016) doi:10.1088/0264-9381/33/18/18LT01 [arXiv:1601.05688 [gr-qc]]. [OpenAIRE]

[9] M. Bojowald, S. Brahma and J. D. Reyes, “Covariance in models of loop quantum gravity: Spherical symmetry,” Phys. Rev. D 92, no. 4, 045043 (2015) doi:10.1103/PhysRevD.92.045043 [arXiv:1507.00329 [gr-qc]]. [OpenAIRE]

[10] J. Struckmeier, “General relativity as an extended canonical gauge theory,” Phys. Rev. D 91, 085030 (2015) doi:10.1103/PhysRevD.91.085030 [arXiv:1411.1558 [gr-qc]]. [OpenAIRE]

[11] J. Struckmeier, J. Muench, D. Vasak, J. Kirsch, M. Hanauske and H. Stoecker, “Canonical Transformation Path to Gauge Theories of Gravity,” Phys. Rev. D 95, 124048 (2017) doi:10.1103/PhysRevD.95.124048 [arXiv:1704.07246 [gr-qc]].

[12] L. Freidel, “Modified gravity without new degrees of freedom,” arXiv:0812.3200 [gr-qc].

[13] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513, 1 (2012) doi:10.1016/j.physrep.2012.01.001 [arXiv:1106.2476 [astro-ph.CO]].

[14] L. Sebastiani, S. Vagnozzi and R. Myrzakulov, “Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics,” Adv. High Energy Phys. 2017, 3156915 (2017) doi:10.1155/2017/3156915 [arXiv:1612.08661 [gr-qc]]. [OpenAIRE]

[15] C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D 84, 064039 (2011) doi:10.1103/PhysRevD.84.064039 [arXiv:1103.3260 [hep-th]]. [OpenAIRE]

42 references, page 1 of 3
Related research
Abstract
Comment: 21 pages, 4 figures. Some details of the more complicated calculations may be found at https://github.com/josegalvez/HD-GR
Subjects
free text keywords: General Relativity and Quantum Cosmology, High Energy Physics - Theory, Mathematical Physics, 37K65, 70H40/5, 83C99, 83D05
Download from
42 references, page 1 of 3

[1] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17, 4 (2014) doi:10.12942/lrr-2014-4 [arXiv:1403.7377 [gr-qc]].

[2] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, no. 6, 061102 (2016) doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].

[3] C. P. Burgess, “The Cosmological Constant Problem: Why it's hard to get Dark Energy from Micro-physics,” doi:10.1093/acprof:oso/9780198728856.003.0004 arXiv:1309.4133 [hep-th].

[4] S. A. Hojman, K. Kuchar and C. Teitelboim, “Geometrodynamics Regained,” Annals Phys. 96 (1976) 88. doi:10.1016/0003-4916(76)90112-3

[5] C. Rovelli, “Constraint algebra in general relativity,” Nuov. Cim. B. (1986) 92:49. doi:10.1007/BF02729696

[6] P. A. M. Dirac, “The Hamiltonian form of field dynamics,” Can. J. Math. 3, 1 (1951). doi:10.4153/CJM1951-001-2

[7] R. Tibrewala, “Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance,” Class. Quant. Grav. 31, 055010 (2014) doi:10.1088/0264-9381/31/5/055010 [arXiv:1311.1297 [gr-qc]].

[8] M. Campiglia, R. Gambini, J. Olmedo and J. Pullin, “Quantum self-gravitating collapsing matter in a quantum geometry,” Class. Quant. Grav. 33, no. 18, 18LT01 (2016) doi:10.1088/0264-9381/33/18/18LT01 [arXiv:1601.05688 [gr-qc]]. [OpenAIRE]

[9] M. Bojowald, S. Brahma and J. D. Reyes, “Covariance in models of loop quantum gravity: Spherical symmetry,” Phys. Rev. D 92, no. 4, 045043 (2015) doi:10.1103/PhysRevD.92.045043 [arXiv:1507.00329 [gr-qc]]. [OpenAIRE]

[10] J. Struckmeier, “General relativity as an extended canonical gauge theory,” Phys. Rev. D 91, 085030 (2015) doi:10.1103/PhysRevD.91.085030 [arXiv:1411.1558 [gr-qc]]. [OpenAIRE]

[11] J. Struckmeier, J. Muench, D. Vasak, J. Kirsch, M. Hanauske and H. Stoecker, “Canonical Transformation Path to Gauge Theories of Gravity,” Phys. Rev. D 95, 124048 (2017) doi:10.1103/PhysRevD.95.124048 [arXiv:1704.07246 [gr-qc]].

[12] L. Freidel, “Modified gravity without new degrees of freedom,” arXiv:0812.3200 [gr-qc].

[13] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513, 1 (2012) doi:10.1016/j.physrep.2012.01.001 [arXiv:1106.2476 [astro-ph.CO]].

[14] L. Sebastiani, S. Vagnozzi and R. Myrzakulov, “Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics,” Adv. High Energy Phys. 2017, 3156915 (2017) doi:10.1155/2017/3156915 [arXiv:1612.08661 [gr-qc]]. [OpenAIRE]

[15] C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D 84, 064039 (2011) doi:10.1103/PhysRevD.84.064039 [arXiv:1103.3260 [hep-th]]. [OpenAIRE]

42 references, page 1 of 3
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue