publication . Preprint . 2006

Heavy Quark Diffusion in Strongly Coupled $\N=4$ Yang Mills

Casalderrey-Solana, Jorge; Teaney, Derek;
Open Access English
  • Published: 17 May 2006
We express the heavy quark diffusion coefficient as the temporal variation of a Wilson line along the Schwinger-Keldysh contour. This generalizes the classical formula for diffusion as a force-force correlator to a non-abelian theory. We use this formula to compute the diffusion coefficient in strongly coupled $\N=4$ Yang-Mills by studying the fluctuations of a string in $AdS_5\times S_5$. The string solution spans the full Kruskal plane and gives access to contour correlations. The diffusion coefficient is $D=2/\sqrt{\lambda} \pi T$ and is therefore parametrically smaller than momentum diffusion, $\eta/(e+p)=1/4\pi T$. The quark mass must be much greater than $...
arXiv: High Energy Physics::Lattice
free text keywords: High Energy Physics - Phenomenology, High Energy Physics - Theory, Nuclear Theory
Related Organizations
Download from
48 references, page 1 of 4

[1] R. Bellwied et al. [STAR Collaboration], Nucl. Phys. A 752, 398 (2005).

[2] K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005) [arXiv:nuclex/0410003].

[3] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 96, 032301 (2006) [arXiv:nuclex/0510047].

[4] J. Bielcik [STAR Collaboration], arXiv:nucl-ex/0511005.

[5] Y. Akiba [PHENIX Collaboration], arXiv:nucl-ex/0510008.

[6] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005) [arXiv:hep-ph/0412346].

[7] D. Molnar, J. Phys. G 31, S421 (2005) [arXiv:nucl-th/0410041].

[8] B. Zhang, L. W. Chen and C. M. Ko, arXiv:nucl-th/0502056.

[9] M. Djordjevic, M. Gyulassy, R. Vogt and S. Wicks, Phys. Lett. B 632, 81 (2006) [arXiv:nuclth/0507019].

[10] N. Armesto, M. Cacciari, A. Dainese, C. A. Salgado and U. A. Wiedemann, arXiv:hepph/0510284.

[11] P. Petreczky and D. Teaney, Phys. Rev. D 73, 014508 (2006) [arXiv:hep-ph/0507318].

[12] G. Aarts and J. M. Martinez Resco, Nucl. Phys. Proc. Suppl. 119, 505 (2003) [arXiv:heplat/0209033].

[13] H. van Hees and R. Rapp, Phys. Rev. C 71, 034907 (2005) [arXiv:nucl-th/0412015].

[14] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[15] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 (1998) [arXiv:hepth/9802109].

48 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue