Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thiamine triphosphate synthesis in Escherichia coli requires FoF1-ATPase

Authors: Gigliobianco, Tiziana;

Thiamine triphosphate synthesis in Escherichia coli requires FoF1-ATPase

Abstract

Exponentially growing E. coli cells contain high amounts of thiamine diphosphate (ThDP), a well-known cofactor, but only ~20% is bound to apoenzymes. We showed that the abundant free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). Both compounds are produced under different conditions of stress. ThTP transiently accumulates in response to amino acid starvation, but, in contrast to AThTP, its synthesis requires the presence of a carbon source yielding pyruvate. Under such conditions, the amount of cellular ThTP may reach up to 20–60% of total thiamine, while it is generally a minor compound (0.1 to 1% of total thiamine). The biological role of ThTP remains uncertain until now, though in E. coli, it seems to be required for rapid adaptation to amino acid starvation. ThTP accumulation requires inorganic phosphate and is inhibited by anoxia and cyanide. It is also blocked by low concentrations of the protonophore CCCP and is inhibited by low concentrations of DCCD, an inhibitor of FoF1-ATP synthase. These results suggest that ThTP is synthesized by a mechanism similar to oxidative phosphorylation, i. e. the reaction ThDP + Pi  ThTP catalyzed by FoF1-ATP synthase and energized by respiration. This hypothesis is supported by the finding that E. coli with FoF1-ATP synthase mutated in various subunits are unable to synthesize ThTP in minimal medium in response to glucose exposure. Moreover, a strain in which the atp operon was deleted is unable to synthesize ThTP, but transformation with a plasmid encoding the atp operon totally restores this capacity. We recently demonstrated a similar chemiosmotic mechanism for ThTP synthesis in rat brain mitochondria suggesting a conserved mechanism for ThTP synthesis between bacteria and mammals.

Related Organizations
Keywords

ThTP, FoF1ATPase, Escherichia coli, Sciences du vivant, Biochimie, biophysique & biologie moléculaire, Life sciences, Biochemistry, biophysics & molecular biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average