Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Europe PubMed Central
Other literature type . 1990
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1990 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a Novel Factor That Interacts with an Immunoglobulin Heavy-Chain Promoter and Stimulates Transcription in Conjunction with the Lymphoid Cell-Specific Factor OTF2

Authors: B K, Yoza; R G, Roeder;

Identification of a Novel Factor That Interacts with an Immunoglobulin Heavy-Chain Promoter and Stimulates Transcription in Conjunction with the Lymphoid Cell-Specific Factor OTF2

Abstract

The tissue-specific expression of the MOPC 141 immunoglobulin heavy-chain gene was studied by using in vitro transcription. B-cell-specific transcription of this gene was dependent on the octamer element 5'-ATGCAAAG-3', located in the upstream region of this promoter and in the promoters of all other immunoglobulin heavy- and light-chain genes. The interaction of purified octamer transcription factors 1 and 2 (OTF1 and OTF2) with the MOPC 141 promoter was studied by using electrophoretic mobility shift assays and DNase I footprinting. Purified OTF1 from HeLa cells and OTF1 and OTF2 from B cells bound to identical sequences within the heavy-chain promoter. The OTF interactions we observed extended over the heptamer element 5'-CTCAGGA-3', and it seems likely that the binding of the purified factors involves cooperation between octamer and heptamer sites in this promoter. In addition to these elements, we identified a second regulatory element, the N element with the sequence 5'-GGAACCTCCCCC-3'. The N element could independently mediate low levels of transcription in both B-cell and HeLa-cell extracts, and, in conjunction with the octamer element, it can promote high levels of transcription in B-cell extracts. The N element bound a transcription factor, NTF, that is ubiquitous in cell-type distribution, and NTF was distinct from any of the previously described proteins that bind to similar sequences. Based on these results, we propose that NTF and OTF2 interactions (both with their cognate DNA elements and possibly at the protein-protein level) may be critical to B-cell-specific expression and that these interactions provide additional pathways for regulating gene expression.

Related Organizations
Keywords

Base Sequence, Genes, Immunoglobulin, Transcription, Genetic, Molecular Sequence Data, Cell Biology, In Vitro Techniques, Regulatory Sequences, Nucleic Acid, Cell Line, DNA-Binding Proteins, Gene Expression Regulation, Humans, Lymphocytes, Immunoglobulin Heavy Chains, Promoter Regions, Genetic, Molecular Biology, Transcription Factors, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
Green