• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 2 versions
Publication . Article . Preprint . 2001

Ekpyrotic universe: Colliding branes and the origin of the hot big bang

Khoury, J.; Ovrut, B. A.; Paul Steinhardt; Turok, N.;
Open Access  
Published: 28 Mar 2001
Publisher: American Physical Society (APS)
We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orbifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations without invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra dimensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polarization experiments and gravitational wave detectors.
Comment: 67 pages, 4 figures. v2,v3: minor corrections, references added
Subjects by Vocabulary

Microsoft Academic Graph classification: Classical mechanics Physics Big Bounce Particle horizon Ekpyrotic universe Theoretical physics Big Crunch Flatness problem Cyclic model Inflation (cosmology) De Sitter universe

arXiv: General Relativity and Quantum Cosmology Astrophysics::Cosmology and Extragalactic Astrophysics


Nuclear and High Energy Physics, High Energy Physics - Theory, Astrophysics, High Energy Physics - Phenomenology

23 references, page 1 of 3

[1] A. H. Guth, Phys. Rev. D 23 (1981) 347.

[2] A. D. Linde, Phys. Lett. B 108 (1982) 389; A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220.

[3] V.A. Ruybakov and M.R. Shaposhnikov, Phys. Lett. B 125 (1983) 136.

[4] K. Akama, Lect. Notes Phys. 176 (1982) 267.

[5] P. Hoˇrava and E. Witten, Nucl. Phys. B460 (1996) 506; B475 (1996) 94.

[6] A. Lukas, B.A. Ovrut and D. Waldram, Nucl. Phys. B532 (1998) 43; Phys. Rev. D 57 (1998) 7529; A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Phys. Rev. D 59 086001 (1999).

[7] J. Lykken, E. Poppitz and S.P. Trivedi, Phys. Lett. B 416 (1998) 286; Nucl. Phys. B543 (1999) 105; Nucl. Phys. B520 (1998) 51.

[8] L.E. Ibanez, C. Muoz and S. Rigolin, Nucl. Phys. B553 (1999) 43; G. Aldazabal, L.E. Ibanez and F. Quevedo, JHEP 0001 (2000) 031; JHEP 0002 (2000) 015.

[9] G. Shiu and S.-H. Henry Tye, Phys. Rev. D 58 (1998) 106007; Z. Kakushadze and S.-H. Henry Tye, Nucl. Phys. B548 (1999) 180.

[10] L. Randall and R. Sundrum, Nucl. Phys. B557 (1999) 79; Phys. Rev. Lett. 83 (1999) 3370; Phys. Rev. Lett. 83 (1999) 4690.

Funded by
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)