Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2018
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Specification of the new core safety measures

Authors: Rineiski, Andrei; Meriot, Clément; Coquelet, Christine; Krepel, Jiri; Fridman, Emil; Mikityuk, Konstantin;

Specification of the new core safety measures

Abstract

The ESFR-SMART core description has been established in several steps on the basis of ESFR-WH core design proposed for the EURATOM CP-ESFR project and experiences gained in EURATOM ESNII+ project. The axial arrangement above the core (Na plenum and absorber) of CP-ESFR was adopted. For further Na void effect reduction, it was proposed to reduce the inner core fissile height: following late CP-ESFR and ESNII+ studies. Unlike ESNII+, an option was considered to keep the upper fissile boundaries at similar axial locations in the inner and outer cores. The ESFR-SMART core includes extra fuel subassemblies at the outer core periphery in order to compensate the inner fissile height reduction. It was also aimed to use the same fuel enrichments in the inner and outer cores, if possible. The corium discharge tubes were included: at the central position, between inner and outer cores, and at the core periphery. The number of DSD locations, including those for passive safety devices, was increased. The axial part between the fissile region and lower gas plenum was proposed to be a combination of the fertile lower blanket and steel reflector below: to reduce the sodium void effect, but prevent breeding. The fissile and fertile heights and single fissile enrichment were finally chosen on the basis of fine optimization studies. A 6-batch fuel reloading scheme was proposed, instead of a 5-batch one in CP-ESFR. The core is surrounded by 2 rings of steel reflector and 1 ring of absorber subassemblies. Outside of absorber there are locations for spent fuel subassemblies, including 3 inner and 3 outer core batches. In the new ESFRSMART core, the calculated void effect is significantly reduced: to a value well below 1$ at the end of cycle. In the following, core specifications are given, which can be most easily used for deterministic neutronics codes such as ERANOS. These specifications contain dimensions and nuclear densities at the room temperature, temperatures related to operating conditions, and tables for thermal expansion. To facilitate model preparations and calculations with Monte-Carlo codes, an additional dataset for a simplified core description at operating conditions is also provided. The appendix contains the EDF report on details of the core design optimization with the SDDS multi-physics and multi-objective method.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 243
    download downloads 280
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 243
    views
    280
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
243
280
Green