

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Wissensvermittlungen im Drama annotieren. Annotationsguideline
Wissensvermittlungen im Drama annotieren. Annotationsguideline
Bei diesem Dokument handelt es sich um die Annotationsguideline "Wissensvermittlungen im Drama annotieren" aus dem Projekt Q:TRACK, gefördert im DFG-Schwerpunktprogramm "Computational Literary Studies". DFG Schwerpunktprogramm SPP 2207 "Computational Literary Studies" Online: https://gepris.dfg.de/gepris/projekt/402743989 https://dfg-spp-cls.github.io/ Teilprojekt: "Quantitative Drama Analytics: Tracking Character Knowledge (Q:TRACK)" Online: https://gepris.dfg.de/gepris/projekt/424244162 https://dfg-spp-cls.github.io/projects_en/de/2020/01/24/TP-QTrack/ https://quadrama.github.io/
{"references": ["Melanie Andresen, Benjamin Krautter, Janis Pagel, Nils Reiter. Who Knows What in German Drama? A Composite Annotation Scheme for Knowledge Transfer. Annotation, Evaluation, and Analysis. Journal of Computational Literary Studies, 1, 2022. DOI: 10.48694/jcls.107."]}
computational literary studies, drama, SPP 2207
computational literary studies, drama, SPP 2207
27 Research products, page 1 of 3
- 2022IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 119 download downloads 103 citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average Powered byBIP!
- 119views103downloads



Bei diesem Dokument handelt es sich um die Annotationsguideline "Wissensvermittlungen im Drama annotieren" aus dem Projekt Q:TRACK, gefördert im DFG-Schwerpunktprogramm "Computational Literary Studies". DFG Schwerpunktprogramm SPP 2207 "Computational Literary Studies" Online: https://gepris.dfg.de/gepris/projekt/402743989 https://dfg-spp-cls.github.io/ Teilprojekt: "Quantitative Drama Analytics: Tracking Character Knowledge (Q:TRACK)" Online: https://gepris.dfg.de/gepris/projekt/424244162 https://dfg-spp-cls.github.io/projects_en/de/2020/01/24/TP-QTrack/ https://quadrama.github.io/
{"references": ["Melanie Andresen, Benjamin Krautter, Janis Pagel, Nils Reiter. Who Knows What in German Drama? A Composite Annotation Scheme for Knowledge Transfer. Annotation, Evaluation, and Analysis. Journal of Computational Literary Studies, 1, 2022. DOI: 10.48694/jcls.107."]}