Notice
On May 12th a massive fire broke out at Marywilska 44, one of the Warsaw's largest shopping centers. This unexpected incident caused power outages in the surrounding area including the ICM data center where OpenAIRE services run. Efforts are underway to restore the power and to get services back online. Some functionalities will not work properly until then.
We apologize for any inconvenience this may have caused.
Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Research . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2022
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kann Künstliche Intelligenz Vorurteile haben? Zur Kritik des 'algorithmic bias' von KI in den Künsten

Authors: Arns, Inke;

Kann Künstliche Intelligenz Vorurteile haben? Zur Kritik des 'algorithmic bias' von KI in den Künsten

Abstract

{"references": ["Al-Badri, Nora und Jan Nikolai Nelles. 2018. NefertitiBot, 2018, Chatbot Installation. Website. nora-al-badri.de. https://www.nora-al-badri.de/works-index#nefertitibot (zugegriffen: 22. M\u00e4rz 2022).", "Arns, Inke. 2021. Kann K\u00fcnstliche Intelligenz Vorurteile haben? Kunstforum, November.", "Arns, Inke und Marie Lechner, Hrsg. 2021. Computer Grrrls. Dortmund: Verlag Kettler, HMKV Hartware Medien-KunstVerein.", "Beuth, Patrick. 2017. K\u00fcnstliche Intelligenz: Die Automaten brauchen Aufsicht. Die Zeit, 25. Oktober. https://www.zeit.de/digital/internet/2017-10/kuenstliche-intelligenz-deepmind-back-box-regulierung/ komplettansicht (zugegriffen: 22. M\u00e4rz 2022).", "Broeckmann, Andreas. 2016. Machine Art in the Twentieth Century. Leonardo book series. Cambridge, MA: MIT Press.", "Broussard, Meredith. 2018. Artificial Unintelligence \u2013 How Computers Misunderstand the World. Cambridge, MA: The MIT Press.", "Crawford, Kate und Trevor Paglen. 2019. Excavating AI \u2013 The Politics of Images in Machine Learning Training Sets. Website. Excavating AI. 19. September. https://www.excavating.ai (zugegriffen: 12. Mai 2020).", "Farocki, Harun. 2005. Der Krieg findet immer einen Ausweg. In: Essay \u2013 Cinema 50, hg. von Natalie B\u00f6hler, Laura Daniel, Flavia Giorgetta, Veronika Grob, Andreas Maurer, und Jan Sahli, 21\u201333. Marburg: Sch\u00fcren Verlag. https://www.cinemabuch.ch/db_data/boo/zxg960_epg647_ukf1420/gesamtbuch.pdf (zugegriffen: 22. M\u00e4rz 2022).", "Harvey, Adam und Julien LaPlace. 2021. Exposing.ai: FAQ. Website. Exposing.ai. https://exposing.ai/about/faq/ (zugegriffen: 22. M\u00e4rz 2022).", "Hayles, Katherine. 2005. Computing the Human. Theory, Culture & Society 22, Nr. 1: 131\u2013151. doi:10.1177/0263276405048438.", "Hunger, Francis. 2021. \"Why so many windows?\" \u2013 Wie die Bilddatensammlung ImageNet die automatisierte Bild-erkennung historischer Bilder beeinflusst. Training the Archive \u2013 Working Paper, Aachen/Dortmund (1. Juni). doi:10.5281/ZENODO.4742621, https://zenodo.org/record/4742621.", "Kaltheuner, Frederike und Nele Oberm\u00fcller. 2018a. Daten Gerechtigkeit. Tugenden f\u00fcr das 21. Jahrhundert. Berlin: Nicolai Publishing & Intelligence GmbH", "Knight, Will. 2021. Researchers Blur Faces That Launched a Thousand Algorithms. Wired, 14. M\u00e4rz. https://www.wired.com/story/researchers-blur-faces-launched-thousand-algorithms/ (zugegriffen: 22. M\u00e4rz 2022).", "Knupfer, Gabriel. 2020. Auch Amazon macht einen R\u00fcckzieher bei der Gesichtserkennung. Handelszeitung, 6. November. https://www.handelszeitung.ch/tech/auch-amazon-macht-einen-ruckzieher-bei-der-gesichts erkennung (zugegriffen: 22. M\u00e4rz 2022).", "Li, Fei-Fei, Kaiyu Yang, Klint Qinami, Jia Deng und Olga Russakovsky. 2020. Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (27. Januar): 547\u2013558. doi:10.1145/3351095.3375709.", "McCurry, Justin. 2021. South Korean Ai Chatbot Pulled from Facebook After Hate Speech Towards Minorities. The Guardian, 14. Januar. https://www.theguardian.com/world/2021/jan/14/time-to-properly-socialise-hate-speech-ai-chatbot-pulled-from-facebook (zugegriffen: 22. M\u00e4rz 2022).", "Menkman, Rosa. 2021. Hinter wei\u00dfen Schatten. In: Computer Grrrls, hg. von Inke Arns und Marie Lechner, 32\u201335. Dortmund: Verlag Kettler, HMKV Hartware MedienKunstVerein.", "Microsoft. 2016. Tay.ai. Website. https://web.archive.org/web/20160414074049/https://www.tay.ai/ (zugegriffen: 22. M\u00e4rz 2022).", "Mordvintsev, Alexander, Christopher Olah und Mike Tyka. 2015. Inceptionism: Going Deeper into Neural Net-works. Blog. Google Research Blog. 17. Juni. https://web.archive.org/web/20150706204910/http://google research.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html (zugegriffen: 22. M\u00e4rz 2022).", "O'Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data increases Inequality and threatens Democracy. New York: Crown", "Onuoha, Mimi. 2016. Missing Datasets. Github Repository. https://github.com/MimiOnuoha/missing-datasets (zugegriffen: 22. M\u00e4rz 2022).", "Roth, Lorna. 2009. Looking at Shirley, the Ultimate Norm \u2013 Colour Balance, Image Technologies, and Cognitive Equity. Canadian Journal of Communication 34, Nr. 1 (28. M\u00e4rz): 111\u2013136. doi:https://doi.org/10.22230/ cjc.2009v34n1a2196, .", "Steyerl, Hito. 2020. Die Autonomie der Bilder oder Dass Bilder t\u00f6ten k\u00f6nnen, wussten wir schon immer, aber jetzt sind sie selbst am Abzug. In: Hito Steyerl: I will survive Films and Installations, hg. von Florian Ebner, Doris Krystof, und Marcella Lista, 229\u2013241. D\u00fcsseldorf, Paris, Leipzig: Kunstsammlung Nordrhein-Westfalen, Centre Pompidou, Spector Books.", "The Economist. 2006. Artificial Artificial Intelligence. The Economist, 6. Oktober. https://web.archive.org/web/ 20190919160806/https://www.economist.com/technology-quarterly/2006/06/10/artificial-artificial-intelligence? story_id=7001738 (zugegriffen: 22. M\u00e4rz 2022).", "Wikipedia Authors. 2022. Amazon Mechanical Turk. In: Wikipedia. 10. Mai. https://en.wikipedia.org/w/ index.php?title=Amazon_Mechanical_Turk&oldid=1087109671 (zugegriffen: 22. M\u00e4rz 2022)."]}

Das Working Paper widmet sich künstlerischen Positionen, die sich kritisch mit ‚Künstlicher Intelligenz‘ und automatisierter Mustererkennung durch Algorithmen auseinander setzen. Anhand einer Reihe von Beispielen zeigt es die gesellschaftliche Problematik auf, die aus den Verzerrungen des Bias resultiert und wie Künstler*innen darauf reagieren. Ausgehend von Analysen Harun Farockis und Hito Steyerls werden Projekte von Adam Harvey und Jules LaPlace, Zach Blas und Jemima Wyman, Elisa Giardina Papa, Francis Hunger und Flupke, Erika Scourti, Mimi Onuoha, Nora Al-Badri und Jan Nikolai Nelles dargestellt

Keywords

Artificial Intelligence, Bias, Art, Machine Learning, Artist

27 references, page 1 of 3

Al-Badri, Nora und Jan Nikolai Nelles. 2018. NefertitiBot, 2018, Chatbot Installation. Website. nora-al-badri.de. https://www.nora-al-badri.de/works-index#nefertitibot (zugegriffen: 22. März 2022).

Arns, Inke. 2021. Kann Künstliche Intelligenz Vorurteile haben? Kunstforum 278 (November): 108-121.

Arns, Inke und Marie Lechner, Hrsg. 2021. Computer Grrrls. Dortmund: Verlag Kettler, HMKV Hartware MedienKunstVerein.

Beuth, Patrick. 2017. Künstliche Intelligenz: Die Automaten brauchen Aufsicht. Die Zeit, 25. Oktober. https://www.zeit.de/digital/internet/2017-10/kuenstliche-intelligenz-deepmind-back-box-regulierung (zugegriffen: 22. März 2022).

Broeckmann, Andreas. 2016. Machine Art in the Twentieth Century. Leonardo book series. Cambridge, MA: MIT Press. [OpenAIRE]

Broussard, Meredith. 2018. Artificial Unintelligence - How Computers Misunderstand the World. Cambridge, MA: The MIT Press.

Bündnis „Gesichtserkennung stoppen“. 2020. Bündnis fordert Verbot automatisierter Gesichtserkennung. Website. Digitalcourage. 1. September. https://digitalcourage.de/blog/2020/buendnis-fordert-verbot-vongesichtserkennung (zugegriffen: 22. März 2022).

Crawford, Kate und Trevor Paglen. 2019. Excavating AI - The Politics of Images in Machine Learning Training Sets. Website. Excavating AI. 19. September. https://www.excavating.ai (zugegriffen: 12. Mai 2020).

Farocki, Harun. 2005. Der Krieg findet immer einen Ausweg. In: Essay - Cinema 50, hg. von Natalie Böhler, Laura Daniel, Flavia Giorgetta, Veronika Grob, Andreas Maurer, und Jan Sahli, 21-33. Marburg: Schüren Verlag.

Harvey, Adam und Julien LaPlace. 2021. Exposing.ai: FAQ. Website. Exposing.ai. https://exposing.ai/about/faq/ (zugegriffen: 22. März 2022).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 130
    download downloads 134
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 130
    views
    134
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
130
134
Green