Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Other literature type . Article . 2012 . Peer-reviewed
License: Elsevier TDM
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dietary mercury exposure in a population with a wide range of fish consumption — Self-capture of fish and regional differences are important determinants of mercury in blood

Authors: Jenssen; M.T.S.; Brantsæter; A.L.; Haugen; M.; Meltzer; +12 Authors

Dietary mercury exposure in a population with a wide range of fish consumption — Self-capture of fish and regional differences are important determinants of mercury in blood

Abstract

Abstract Human, low level, chronic exposure to mercury (Hg) from fish is of concern because of potential neurodevelopmental and cardiovascular toxicity. The purpose of the study was to 1) measure total mercury (THg) in blood and estimate dietary exposure in a population group with a wide range of seafood consumption, 2) assess the intake and blood concentration in relation to tolerable intake values, 3) characterise dietary sources, and 4) to investigate the relationship between dietary THg with THg in blood (BTHg), including factors that can explain the variance in BTHg concentrations. The participants (n = 184) filled in an extensive food frequency questionnaire which was combined with a database on THg concentrations in Norwegian food, and donated blood and urine. Median consumption of seafood was 65 g/day (range 4 to 341 g/day). The calculated mean dietary THg exposure was 0.35 (median 0.30) μg/kg body weight/week. Seafood contributed on average 95% to the exposure. The JECFA Provisional Tolerable Weekly Intake (PTWI) of 1.6 μg MeHg/kg bw/week was not exceeded by any of the participants. BTHg ranged from 0.6 to 30 μg/L, with a mean of 5.3 (median 4.0 μg/L). There was a strong relationship between total seafood consumption and BTHg concentrations (r = 0.58 95%CI: 0.48, 0.67) and between estimated THg dietary exposure and BTHg (r = 0.46 95%CI: 0.35, 0.57). Fish consumption, sex, catching > 50% of their seafood themselves, and living in coastal municipalities were significant factors in linear regression models with lnBTHg. Including urinary Hg in the regression model increased the explained variance from 54% to 65%. In a toxicokinetic model, the calculated dietary intake appeared to moderately underestimate the measured BTHg among the participants with the highest BTHg. Only two of the participants had BTHg slightly above a value equivalent to the JECFA PTWI, but none of them were women in fertile age.

Subjects by Vocabulary

Microsoft Academic Graph classification: Dietary Mercury Population chemistry.chemical_element Urine Toxicology Linear regression education education.field_of_study Chemistry Fish consumption Explained variation Mercury (element) Regional differences

Keywords

Adult, Male, Environmental Engineering, Food Contamination, Young Adult, Surveys and Questionnaires, Animals, Humans, Environmental Chemistry, Waste Management and Disposal, Aged, Aged, 80 and over, Norway, Fishes, Feeding Behavior, Mercury, Middle Aged, Pollution, Cross-Sectional Studies, Seafood, Female, Water Pollutants, Chemical, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%