Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Medical Physicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Physics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Medical Physics
Article . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

density effects of silica aerogel insulation on the performance of a graphite probe calorimeter

Authors: Arman Sarfehnia; Arman Sarfehnia; Jan Seuntjens; J Renaud; Julien Bancheri;

density effects of silica aerogel insulation on the performance of a graphite probe calorimeter

Abstract

PurposeWith the introduction of a novel graphite probe calorimeter, called the Aerrow, various thermal insulating materials are being explored to further improve the device. Silica‐based aerogels are proving to be an optimal material due to their low densities, small thermal conductivities, rigidity, and machinability. The aim of this work is to determine how various silica aerogel densities affect the Aerrow’s performance.MethodsPerformance concerns three areas: heat transfer from the core, the Aerrow’s beam quality dependence, and the effects of an applied magnetic field on its measurement of absorbed dose to water. A numerical heat transfer study was done to determine heat transfer time constants. The EGSnrc radiation transport toolkit was used to determine absorbed dose conversion factors which are used to quantify the Aerrow’s beam quality dependence. Dose conversion factors for Cobalt‐60 and two clinical photon beams (6 and 10 MV) were determined. Magnetic field perturbation factors are used to characterize the Aerrow’s performance under an applied magnetic field. EGSnrc with the magnetic field transport algorithm was used to determine these perturbations for a 1.5 T MR‐linac. Several aerogel densities (0.01–0.55 g ) were examined for each performance area.ResultsHeat transfer time constants were found to vary from 52 ± 2 to 117.4 ± 0.4 s. The time constants decreased with increasing aerogel density. The Aerrow’s beam quality dependence varied between 0.5% and 1%, decreasing with increasing aerogel density. Beam quality dependence was determined in the range of Co to 10 MV (58.4% ≤  ≤ 73.5%). Under an applied magnetic field, perturbations were smallest when the Aerrow was parallel to the field. Perturbations varied more so when the Aerrow was perpendicular to the magnetic field and increased with increasing aerogel density. In all cases, perturbations were less than 0.6% from unity with a relative uncertainty of 0.1%.ConclusionSilica‐based aerogels demonstrate an improved performance over thermal insulation used in previous iterations of the Aerrow. With it, the Aerrow has shown to be robust in several areas. If heat transfer can be properly corrected for in the dose determination and the parallel orientation is used under a magnetic field, then the high density aerogel is possibly more preferable.

Related Organizations
Keywords

Hot Temperature, Phantoms, Imaging, Uncertainty, Water, Calorimetry, Silicon Dioxide, Magnetic Fields, Humans, Graphite, Radiometry, Monte Carlo Method, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
bronze