Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repository of the Cz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.18429/jacow...
Conference object . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control system for lasers at HiLASE

Authors: Horáček, J. (Jakub); Řeháková, M. (Martina); Mocek, T. (Tomáš); Pogacnik, M.; Podlipnik, J.; Modic, M.;

Control system for lasers at HiLASE

Abstract

We present the current state of the HiLASE Centre control system developed in cooperation with Cosylab. The aim of the development is to build a control system which would be in charge of the operation of kW-class in-house-developed laser beamlines. These beamlines deliver picosecond pulses with repetition rates between 1 kHz and 1 MHz and high-energy nanosecond pulses at 10 Hz. A generic control system architecture is presented, which can either support full-size development lasers or compact industrial versions. The EPICS control system work focuses on image acquisition and processing, vacuum control, provision of timing, archiving and user interfaces. HiLASE provides high-level requirements, Cosylab complements them, provides the design of the solution and implementation. Delivery is performed during on-site visits where a test plan is executed for acceptance. This approach relieves HiLASE of the need to hire and manage their own team while retaining full control over the functionality through requirements and acceptance approval. Cosylab complements HiLASE with self-managed teams that deliver to specification.

Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia

Country
Czech Republic
Related Organizations
Keywords

real-time PLC, EPICS, Perla lasers, control system, HiLASE, Accelerator Physics, MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green