publication . Article . 2011

Myoelectric forearm prostheses: State of the art from a user-centered perspective

Bart Peerdeman; Daphne Boere; Heidi J.B. Witteveen; Rianne Huis in 't Veld; Hermie Hermens; Stefano Stramigioli; Hans S. Rietman; Peter H. Veltink; Sarthak Misra;
Open Access
  • Published: 01 Aug 2011
  • Publisher: Journal of Rehabilitation Research & Development
  • Country: Netherlands
User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop ...
Persistent Identifiers
free text keywords: METIS-279195, Myoelectric hand prostheses, IR-78221, EWI-20642, Perception, media_common.quotation_subject, media_common, End user, Spatial acuity, Forearm, medicine.anatomical_structure, medicine, Prosthesis, medicine.medical_treatment, Functional requirement, Computer science, Human–computer interaction, Needs assessment
Related Organizations
99 references, page 1 of 7

1. Atkins DJ, Heard DC, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot. 1996;8(1):2-11. DOI:10.1097/00008526-199600810-00003

2. Biddiss E, Chau T. Upper-limb prosthetics: Critical factors in device abandonment. Am J Phys Med Rehabil. 2007; 86(12):977-87. [PMID: 18090439] DOI:10.1097/PHM.0b013e3181587f6c

3. Pons JL, Ceres R, Rocon E, Reynaerts D, Saro B, Levin S, Van Moorleghem W. Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis. Robotica. 2005;23(3):301-10. DOI:10.1017/S0263574704001328

4. The i-LIMB Hand [Internet]. Hilliard (OH): Touch Bionics; 2011. Available from:

5. Bebionic [Internet]. Leeds (UK): RSL Steeper; 2011. Available from:

6. Michelangelo hand [Internet]. Duderstadt (Germany): Otto Bock; 2011. Available from:

7. Klopsteg PE, Wilson PD. Human limbs and their substitutes. New York (NY): Hafner; 1954.

8. Huis in 't Veld RM, Widya IA, Bults RG, Sandsjö L, Hermens HJ, Vollenbroek-Hutten MM. A scenario guideline for designing new teletreatments: A multidisciplinary approach. J Telemed Telecare. 2010;16(6):302-7. [PMID: 20798423] DOI:10.1258/jtt.2010.006003 [OpenAIRE]

9. Beynon-Davies P, Holmes S. Design breakdowns, scenarios and rapid application development. Inform Software Technol. 2002;44(10):579-92. DOI:10.1016/S0950-5849(02)00078-2

10. Bookman A, Harrington M, Pass L, Reisner E. Family caregiver handbook. Cambridge (MA): Massachusetts Institute of Technology; 2007.

11. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236-57. [PMID: 17979010] DOI:10.1080/03093640600994581 [OpenAIRE]

12. Hermens HJ. Surface EMG. Enschede (the Netherlands): Febodruk; 1991.

13. Su Y, Wolczowski A, Fisher MH, Bell GD, Burn D, Gao R. Towards an EMG controlled prosthetic hand using a 3D electromagnetic positioning system. Proceedings of the IEEE Instrumentation and Measurement Technology Conference; 2005 May 16-19; Ottawa, Canada. Los Alamitos (CA): IEEE; 2005. p. 261-66. DOI:10.1109/IMTC.2005.1604113

14. De Luca C. Electromyography. In: Webster JG, editor. Encyclopedia of medical devices and instrumentation. Boston (MA): John Wiley & Sons; 2006. p. 98-109. DOI:10.1002/0471732877.emd097

15. Asghari Oskoei M, Hu H. Myoelectric control systems-A survey. Biomed Signal Process Control. 2007;2(4):275-94.

99 references, page 1 of 7
Any information missing or wrong?Report an Issue