Views provided by UsageCounts
The nucleus contains diacylglycerol kinases (DGKs), i.e., the enzymes that, by converting diacylglycerol (DG) into phosphatidic acid, terminate DG-dependent events. It has been demonstrated that nuclear DGK-zeta interferes with cell cycle progression. We previously reported that nuclear DGK-zeta expression increased during myogenic differentiation, whereas its down-regulation impaired differentiation. Here, we evaluated the possible involvement of nuclear DGK-zeta in cell cycle progression of C2C12 myoblasts. Overexpression of a wild-type DGK-zeta, which mainly localized to the nucleus (but not of a kinase dead mutant or of a mutant that did not enter the nucleus), blocked the cells in the G1 phase of the cell cycle, as demonstrated by in situ analysis of biotinylated-16-dUTP incorporated into newly synthesized DNA and by flow cytometry. In contrast, down-regulation of endogenous DGK-zeta by short interfering RNA (siRNA) increased the number of cells in both the S and G2/M phases of the cell cycle. Cell cycle arrest of cells overexpressing wild-type DGK-zeta was accompanied by decreased levels of retinoblastoma protein phosphorylated on Ser-807/811. Down-regulation of endogenous DGK-zeta, using siRNA, prevented the cell cycle block characterizing C2C12 cell myogenic differentiation. Overall, our results identify nuclear DGK-zeta as a key determinant of cell cycle progression and differentiation of C2C12 cells.
Cell Nucleus, DNA Replication, Diacylglycerol Kinase, Recombinant Fusion Proteins, Cell Cycle, Cell Cycle Proteins, Cell Differentiation, Retinoblastoma Protein, nucleus; lipid-dependent signaling pathways; siRNA; phosphorylated pRB, Cell Line, Isoenzymes, Myoblasts, Mice, Animals, RNA, Small Interfering
Cell Nucleus, DNA Replication, Diacylglycerol Kinase, Recombinant Fusion Proteins, Cell Cycle, Cell Cycle Proteins, Cell Differentiation, Retinoblastoma Protein, nucleus; lipid-dependent signaling pathways; siRNA; phosphorylated pRB, Cell Line, Isoenzymes, Myoblasts, Mice, Animals, RNA, Small Interfering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 102 |

Views provided by UsageCounts