Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 1997 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of GDNF and its receptors in developing tooth is developmentally regulated and suggests multiple roles in innervation and organogenesis

Authors: Keijo Luukko; Petro Suvanto; Irma Thesleff; Mart Saarma;

Expression of GDNF and its receptors in developing tooth is developmentally regulated and suggests multiple roles in innervation and organogenesis

Abstract

Glial cell line-derived neurotrophic factor (GDNF) is a recently identified survival factor for several populations of neurons in the central and peripheral nervous system that also regulates kidney development. To study the roles of GDNF in the regulation of tooth innervation and formation, we analyzed by in situ hybridization the expression patterns of GDNF and its receptors Ret, GDNF family receptor alpha-1 (GFRalpha-1), and GFRalpha-2 from the initiation of first molar formation to the completion of crown morphogenesis. At the time of trigeminal axon ingrowth, GDNF mRNAs were expressed in the mesenchyme around the tooth germ (i.e., target field of the dental innervation), suggesting that it is involved in the regulation of the embryonic tooth innervation. This hypothesis was supported by the ability of GDNF to induce neurite outgrowth from embryonic day 12 (E12) to E15 trigeminal ganglia. This timing correlated with the appearance of Ret in the subset of cells in the trigeminal ganglion at E12, whereas GFRalpha-1 and GFRalpha-2 receptors were constantly expressed in trigeminal ganglion during E11-E15. After birth, GDNF expression showed apparent correlation with the ingrowth and presence of trigeminal nerve fibers in the tooth, suggesting that GDNF is involved in the regulation of innervation of the dental papilla and dentin postnatally. Ret, GFRalpha-1, and GFRalpha-2 mRNAs were expressed in the dental epithelial and mesenchymal cells at stages when epithelial-mesenchymal signalling regulates critical steps of tooth morphogenesis. Ret and GFRalpha-2 were colocalized in the dental mesenchyme during bud and cap stages. Expression of GFRalpha-1 associated with the formation of the epithelial enamel knot, which is a putative embryonic signalling center regulating tooth shape. During postnatal development, GDNF and its receptors were expressed in dental papilla mesenchyme. In addition, GDNF and GFRalpha-1 transcripts were seen in the preodontoblasts and odontoblasts, suggesting that they may be involved in differentiation and maintenance of functional properties of the odontoblasts. Taken together, these results suggest that GDNF acts as a target-derived neurotrophic factor during tooth innervation. In addition, GDNF and its receptors may have nonneuronal organogenetic functions during tooth morphogenesis.

Related Organizations
Keywords

Male, Neurons, Glial Cell Line-Derived Neurotrophic Factor Receptors, Proto-Oncogene Proteins c-ret, Gene Expression Regulation, Developmental, Receptor Protein-Tyrosine Kinases, Nerve Tissue Proteins, Embryonic and Fetal Development, Mice, Trigeminal Ganglion, Proto-Oncogene Proteins, Mice, Inbred CBA, Neurites, Animals, Drosophila Proteins, Female, Glial Cell Line-Derived Neurotrophic Factor, Nerve Growth Factors, Tooth

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities